Dulbecco Telethon Institute DTI

Rome, Italy

Dulbecco Telethon Institute DTI

Rome, Italy
SEARCH FILTERS
Time filter
Source Type

Raimondi F.,Dulbecco Telethon Institute DTI | Felline A.,Dulbecco Telethon Institute DTI | Seeber M.,Dulbecco Telethon Institute DTI | Mariani S.,Dulbecco Telethon Institute DTI | Fanelli F.,Dulbecco Telethon Institute DTI
Journal of Chemical Theory and Computation | Year: 2013

Graph theory is being increasingly used to study the structural communication in biomolecular systems. This requires incorporating information on the system's dynamics, which is time-consuming and not suitable for high-throughput investigations. We propose a mixed Protein Structure Network (PSN) and Elastic Network Model (ENM)-based strategy, i.e., PSN-ENM, for fast investigation of allosterism in biological systems. PSN analysis and ENM-Normal Mode Analysis (ENM-NMA) are implemented in the structural analysis software Wordom, freely available at http://wordom.sourceforge.net/. The method performs a systematic search of the shortest communication pathways that traverse a protein structure. A number of strategies to compare the structure networks of a protein in different functional states and to get a global picture of communication pathways are presented as well. The approach was validated on the PDZ2 domain from tyrosine phosphatase 1E (PTP1E) in its free (APO) and peptide-bound states. PDZ domains are, indeed, the systems whose structural communication and allosteric features are best characterized both in vitro and in silico. The agreement between predictions by the PSN-ENM method and in vitro evidence is remarkable and comparable to or higher than that reached by more time-consuming computational approaches tested on the same biological system. Finally, the PSN-ENM method was able to reproduce the salient communication features of unbound and bound PTP1E inferred from molecular dynamics simulations. High speed makes this method suitable for high throughput investigation of the communication pathways in large sets of biomolecular systems in different functional states. © 2013 American Chemical Society.


Forcales S.V.,Sanford Burnham Institute for Medical Research | Forcales S.V.,Institute of Predictive and Personalized Medicine of Cancer IMPPC | Albini S.,Sanford Burnham Institute for Medical Research | Giordani L.,Sanford Burnham Institute for Medical Research | And 17 more authors.
EMBO Journal | Year: 2012

Tissue-specific transcriptional activators initiate differentiation towards specialized cell types by inducing chromatin modifications permissive for transcription at target loci, through the recruitment of SWItch/Sucrose NonFermentable (SWI/SNF) chromatin-remodelling complex. However, the molecular mechanism that regulates SWI/SNF nuclear distribution in response to differentiation signals is unknown. We show that the muscle determination factor MyoD and the SWI/SNF subunit BAF60c interact on the regulatory elements of MyoD-target genes in myoblasts, prior to activation of transcription. BAF60c facilitates MyoD binding to target genes and marks the chromatin for signal-dependent recruitment of the SWI/SNF core to muscle genes. BAF60c phosphorylation on a conserved threonine by differentiation-activated p38α kinase is the signal that promotes incorporation of MyoD-BAF60c into a Brg1-based SWI/SNF complex, which remodels the chromatin and activates transcription of MyoD-target genes. Our data support an unprecedented two-step model by which pre-assembled BAF60c-MyoD complex directs recruitment of SWI/SNF to muscle loci in response to differentiation cues. © 2012 European Molecular Biology Organization | All Rights Reserved.


Consalvi S.,Dulbecco Telethon Institute DTI | Saccone V.,Dulbecco Telethon Institute DTI | Giordani L.,Dulbecco Telethon Institute DTI | Minetti G.,Dulbecco Telethon Institute DTI | And 4 more authors.
Molecular Medicine | Year: 2011

Histone deacetylases inhibitors (HDACi) include a growing number of drugs that share the ability to inhibit the enzymatic activity of some or all the HDACs. Experimental and preclinical evidence indicates that these epigenetic drugs not only can be effective in the treatment of malignancies, inflammatory diseases and degenerative disorders, but also in the treatment of genetic diseases, such as muscular dystrophies. The ability of HDACi to counter the progression of muscular dystrophies points to HDACs as a crucial link between specific genetic mutations and downstream determinants of disease progression. It also suggests the contribution of epigenetic events to the pathogenesis of muscular dystrophies. Here we describe the experimental evidence supporting the key role of HDACs in the control of the transcriptional networks underlying the potential of dystrophic muscles either to activate compensatory regeneration or to undergo fibroadipogenic degeneration. Studies performed in mouse models of Duchenne muscular dystrophy (DMD) indicate that dystrophin deficiency leads to deregulated HDAC activity, which perturbs downstream networks and can be restored directly, by HDAC blockade, or indirectly, by reexpression of dystrophin. This evidence supports the current view that HDACi are emerging candidate drugs for pharmacological interventions in muscular dystrophies, and reveals unexpected common beneficial outcomes of pharmacological treatment or gene therapy. © 2011 The Feinstein Institute for Medical Research.


Palacios D.,Institute of Cancer Research | Palacios D.,Dulbecco Telethon Institute DTI | Summerbell D.,Institute of Cancer Research | Rigby P.W.J.,Institute of Cancer Research | And 2 more authors.
Molecular and Cellular Biology | Year: 2010

During development, gene activation is stringently regulated to restrict expression only to the correct cell type and correct developmental stage. Here, we present mechanistic evidence that suggests DNA methylation contributes to this regulation by suppressing premature gene activation. Using the mouse Myogenin promoter as an example of the weak CpG island class of promoters, we find that it is initially methylated but becomes demethylated as development proceeds. Full hypersensitive site formation of the Myogenin promoter requires both the MEF2 and SIX binding sites, but binding to only one site can trigger the partial chromatin opening of the nonmethylated promoter. DNA methylation markedly decreases hypersensitive site formation that now occurs at a detectable level only when binding to both MEF2 and SIX binding sites is possible. This suggests that the probability of activating the methylated promoter is low until two of the factors are coexpressed within the same cell. Consistent with this, the single-cell analysis of developing somites shows that the coexpression of MEF2A and SIX1, which bind the MEF2 and SIX sites, correlates with the fraction of cells that demethylate the Myogenin promoter. Taken together, these studies imply that DNA methylation helps to prevent inappropriate gene activation until sufficient activating factors are coexpressed. Copyright © 2010, American Society for Microbiology. All Rights Reserved.


Palacios D.,Dulbecco Telethon Institute DTI | Palacios D.,Sanford Burnham Institute for Medical Research | Mozzetta C.,Dulbecco Telethon Institute DTI | Mozzetta C.,Sanford Burnham Institute for Medical Research | And 15 more authors.
Cell Stem Cell | Year: 2010

How regeneration cues are converted into the epigenetic information that controls gene expression in adult stem cells is currently unknown. We identified an inflammation-activated signaling in muscle stem (satellite) cells, by which the polycomb repressive complex 2 (PRC2) represses Pax7 expression during muscle regeneration. TNF-activated p38α kinase promotes the interaction between YY1 and PRC2, via threonine 372 phosphorylation of EZH2, the enzymatic subunit of the complex, leading to the formation of repressive chromatin on Pax7 promoter. TNF-α antibodies stimulate satellite cell proliferation in regenerating muscles of dystrophic or normal mice. Genetic knockdown or pharmacological inhibition of the enzymatic components of the p38/PRC2 signaling - p38α and EZH2 - invariably promote Pax7 expression and expansion of satellite cells that retain their differentiation potential upon signaling resumption. Genetic knockdown of Pax7 impaired satellite cell proliferation in response to p38 inhibition, thereby establishing the biological link between p38/PRC2 signaling to Pax7 and satellite cell decision to proliferate or differentiate. © 2010 Elsevier Inc.


Mariani S.,University of Modena and Reggio Emilia | Mariani S.,Dulbecco Telethon Institute DTI | Dell'Orco D.,University of Verona | Felline A.,University of Modena and Reggio Emilia | And 5 more authors.
PLoS Computational Biology | Year: 2013

A number of incurable retinal diseases causing vision impairments derive from alterations in visual phototransduction. Unraveling the structural determinants of even monogenic retinal diseases would require network-centered approaches combined with atomistic simulations.The transducin G38D mutant associated with the Nougaret Congenital Night Blindness (NCNB) was thoroughly investigated by both mathematical modeling of visual phototransduction and atomistic simulations on the major targets of the mutational effect.Mathematical modeling, in line with electrophysiological recordings, indicates reduction of phosphodiesterase 6 (PDE) recognition and activation as the main determinants of the pathological phenotype. Sub-microsecond molecular dynamics (MD) simulations coupled with Functional Mode Analysis improve the resolution of information, showing that such impairment is likely due to disruption of the PDEγ binding cavity in transducin. Protein Structure Network analyses additionally suggest that the observed slight reduction of theRGS9-catalyzed GTPase activity of transducin depends on perturbed communication between RGS9 and GTP binding site. These findings provide insights into the structural fundamentals of abnormal functioning of visual phototransduction caused by a missense mutation in one component of the signaling network. This combination of network-centered modeling with atomistic simulations represents a paradigm for future studies aimed at thoroughly deciphering the structural determinants of genetic retinal diseases. Analogous approaches are suitable to unveil the mechanism of information transfer in any signaling network either in physiological or pathological conditions. © 2013 Mariani et al.


Puri P.L.,Sanford Burnham Institute for Medical Research | Puri P.L.,Dulbecco Telethon Institute DTI | Mercola M.,Sanford Burnham Institute for Medical Research | Mercola M.,University of California at San Diego
Genes and Development | Year: 2012

Developmental biologists have defined many of the diffusible and transcription factors that control muscle differentiation, yet we still have only rudimentary knowledge of the mechanisms that dictate whether a myogenic progenitor cell forms muscle versus alternate lineages, including those that can be pathological in a state of disease or degeneration. Clues about the molecular basis for lineage determination in muscle progenitors are only now emerging from studies of chromatin modifications that avail myogenic genes for transcription, together with analysis of the composition and activities of the chromatin-modifying complexes themselves. Here we review recent progress on muscle determination and explore a unifying theme that environmental cues from the stem or progenitor niche control the selection of specific subunit variants of the switch/sucrose nonfermentable (SWI/SNF) chromatin-modifying complex, creating a combinatorial code that dictates whether cells adopt myogenic versus nonmyogenic cell fates. A key component of the code appears to be the mutually exclusive usage of the a, b, and c variants of the 60-kD structural subunit BAF60 (BRG1/BRM-associated factor 60), of which BAF60c is essential to activate both skeletal and cardiac muscle programs. Since chromatin remodeling governs myogenic fate, the combinatorial assembly of the SWI/SNF complex might be targeted to develop drugs aimed at the therapeutic reduction of compensatory fibrosis and fatty deposition in chronic muscular disorders. © 2012 by Cold Spring Harbor Laboratory Press.


Albini S.,Sanford Burnham Institute for Medical Research | Puri P.L.,Sanford Burnham Institute for Medical Research | Puri P.L.,Dulbecco Telethon Institute DTI
Experimental Cell Research | Year: 2010

Skeletal muscle differentiation relies on the coordinated activation and repression of specific subsets of genes. This reflects extensive changes in chromatin architecture, composition of chromatin-associated complexes and histone modifications at the promoter/enhancer elements of skeletal muscle genes. An early, key event in the activation of muscle-specific gene transcription is the disruption of the repressive conformation imposed by nucleosomes, which impede the access of pioneer transcription factors, such as the muscle-specific basic helix-loop-helix (bHLH) factors MyoD and Myf5, to their DNA-binding sites. This review focuses on our current understanding of the role of the SWI/SNF ATP-dependent chromatin-remodeling complex in the activation of the myogenic program, by inducing conformational changes permissive for muscle-gene expression. Recent findings suggest that specific combinations of individual SWI/SNF components can generate sub-complexes with specialized functions that are engaged at sequential stages of muscle-gene activation - e.g. initial displacement of the nucleosome followed by the loading of the complete myogenic transcriptosome that promotes gene transcription. SWI/SNF composition and function is regulated by the exchange of specific variants of structural sub-units. In turn, an exchange of histone variants and related epigenetic modifications might reflect the impact of distinct SWI/SNF complexes on the architecture and activity of target promoter/enhancer elements. Thus, the SWI/SNF complexes should be regarded not just as simple executors of the program imposed by transcription factors, but as multifaceted "readers" and "shapers" of the chromatin/DNA landscape within target muscle genes along the transition from myoblasts to myotubes. © 2010 Elsevier Inc.


Mozzetta C.,Dulbecco Telethon Institute DTI | Mozzetta C.,Sanford Burnham Institute for Medical Research | Consalvi S.,Dulbecco Telethon Institute DTI | Consalvi S.,Sanford Burnham Institute for Medical Research | And 6 more authors.
Cell Cycle | Year: 2011

Muscle regeneration relies on adult muscle stem (satellite) cells. Inflammatory cues released within the regenerative microenvironment, such as TNFα, instruct different components of the satellite cell niche toward specialized tasks by regulating specific subsets of genes in each individual cell type. However, how regeneration cues are deciphered and interpreted by the multitude of cell types within the regenerative environment is unknown. We have recently identified an inflammationactivated signaling, consisting of p38α-mediated recruitment of Polycomb Repressive Complex 2 (PRC2) to the Pax7 promoter, in satellite cells. Here we show that p38α-PRC2 regulation of Pax7 expression is restricted to a discrete stage of satellite cell-mediated regeneration. In activated satellite cells, Pax7 locus shows a "bivalent" chromatin signature, with co-existence of H3-K27 3me and H3-K43me, that appears to confer responsiveness to p38α-PRC2 signaling. p38α activation resolves bivalence to H3-K273me which results in Pax7 repression, while p38α blockade promotes Pax7 expression by preventing PRC2-mediated H3-K273me and leading to relative increase in H3-K43me. Interestingly, in satellite cell-derived myotubes Pax7 expression cannot be re-induced by p38α blockade, revealing a post-mitotic resistance of Pax7 gene to inflammatory cues. Likewise, in other cell types, such as muscle-derived fibroblasts, Pax7 locus is constitutively repressed by PRC2 and is unresponsive to p38α signaling. Finally, we show that Pax7 repression in embryonic stem cells is not directed by p38α signaling, although it is mediated by PRC2. This evidence indicates a cell type- and differentiation-stage-specific control of Pax7 transcription by the p38α-PRC2. © 2011 Landes Bioscience.


Peserico A.,Laboratory of Signal dependent Transcription | Chiacchiera F.,Laboratory of Signal dependent Transcription | Grossi V.,Cancer Genetics Laboratory | Matrone A.,Laboratory of Signal dependent Transcription | And 11 more authors.
Cellular and Molecular Life Sciences | Year: 2013

Reduction of nutrient intake without malnutrition positively influences lifespan and healthspan from yeast to mice and exerts some beneficial effects also in humans. The AMPK-FoxO axis is one of the evolutionarily conserved nutrient-sensing pathways, and the FOXO3A locus is associated with human longevity. Interestingly, FoxO3A has been reported to be also a mitochondrial protein in mammalian cells and tissues. Here we report that glucose restriction triggers FoxO3A accumulation into mitochondria of fibroblasts and skeletal myotubes in an AMPK-dependent manner. A low-glucose regimen induces the formation of a protein complex containing FoxO3A, SIRT3, and mitochondrial RNA polymerase (mtRNAPol) at mitochondrial DNA-regulatory regions causing activation of the mitochondrial genome and a subsequent increase in mitochondrial respiration. Consistently, mitochondrial transcription increases in skeletal muscle of fasted mice, with a mitochondrial DNA-bound FoxO3A/SIRT3/mtRNAPol complex detectable also in vivo. Our results unveil a mitochondrial arm of the AMPK-FoxO3A axis acting as a recovery mechanism to sustain energy metabolism upon nutrient restriction. © 2012 Springer Basel.

Loading Dulbecco Telethon Institute DTI collaborators
Loading Dulbecco Telethon Institute DTI collaborators