Entity

Time filter

Source Type


Cabianca D.S.,Vita-Salute San Raffaele University | Cabianca D.S.,San Raffaele Scientific Institute | Gabellini D.,San Raffaele Scientific Institute | Gabellini D.,Dulbecco Telethon Institute
Journal of Cell Biology | Year: 2010

In humans, copy number variations (CNVs) are a common source of phenotypic diversity and disease susceptibility. Facioscapulohumeral muscular dystrophy (FSHD) is an important genetic disease caused by CNVs. It is an autosomal-dominant myopathy caused by a reduction in the copy number of the D4Z4 macrosatellite repeat located at chromosome 4q35. Interestingly, the reduction of D4Z4 copy number is not sufficient by itself to cause FSHD. A number of epigenetic events appear to affect the severity of the disease, its rate of progression, and the distribution of muscle weakness. Indeed, recent findings suggest that virtually all levels of epigenetic regulation, from DNA methylation to higher order chromosomal architecture, are altered at the disease locus, causing the de-regulation of 4q35 gene expression and ultimately FSHD. © 2010 Cabianca and Gabellini. Source


Sandri M.,University of Padua | Sandri M.,Dulbecco Telethon Institute | Sandri M.,Venetian Institute of Molecular Medicine
FEBS Letters | Year: 2010

Muscle mass represents 40-50% of the human body and, in mammals, is one of the most important sites for the control of metabolism. Moreover, during catabolic conditions, muscle proteins are mobilized to sustain gluconeogenesis in the liver and to provide alternative energy substrates for organs. However, excessive protein degradation in the skeletal muscle is detrimental for the economy of the body and it can lead to death. The ubiquitin-proteasome and autophagy-lysosome systems are the major proteolytic pathways of the cell and are coordinately activated in atrophying muscles. However, the role and regulation of the autophagic pathway in skeletal muscle is still largely unknown. This review will focus on autophagy and discuss its beneficial or detrimental role for the maintenance of muscle mass. © 2010 Federation of European Biochemical Societies. Source


More L.,Dulbecco Telethon Institute | Jensen G.,Columbia University
Learning and Memory | Year: 2014

Forty mice acquired conditioned responses to stimuli presented in a multiple schedule with variable inter-trial intervals (ITIs). In some trials, reinforcement was preceded by a variable conditioned stimulus (CS), while other trials were reinforced following distinctive fixed-duration CS. A third stimulus was presented but never paired with reinforcement. Subjects in five groups experienced ITIs of different durations. Acquisition of responding to each stimulus depended only on the cycle-totrial ratio (C/T), and thus on the temporal contingency of each stimulus. Acquisition was unaffected by whether CSs were of fixed or variable duration. © 2014 Morè and Jensen. Source


Gomes L.C.,Dulbecco Telethon Institute | Gomes L.C.,Venetian Institute of Molecular Medicine | Gomes L.C.,University of Coimbra | Benedetto G.D.,Venetian Institute of Molecular Medicine | And 4 more authors.
Nature Cell Biology | Year: 2011

A plethora of cellular processes, including apoptosis, depend on regulated changes in mitochondrial shape and ultrastructure. The role of mitochondria and of their morphology during autophagy, a bulk degradation and recycling process of eukaryotic cells constituents, is not well understood. Here we show that mitochondrial morphology determines the cellular response to macroautophagy. When autophagy is triggered, mitochondria elongate in vitro and in vivo. During starvation, cellular cyclic AMP levels increase and protein kinase A (PKA) is activated. PKA in turn phosphorylates the pro-fission dynamin-related protein 1 (DRP1), which is therefore retained in the cytoplasm, leading to unopposed mitochondrial fusion. Elongated mitochondria are spared from autophagic degradation, possess more cristae, increased levels of dimerization and activity of ATP synthase, and maintain ATP production. Conversely, when elongation is genetically or pharmacologically blocked, mitochondria consume ATP, precipitating starvation-induced death. Thus, regulated changes in mitochondrial morphology determine the fate of the cell during autophagy. © 2011 Macmillan Publishers Limited. All rights reserved. Source


Lanzuolo C.,Dulbecco Telethon Institute | Lanzuolo C.,CNR Institute of Neurobiology and Molecular Medicine | Sardo F.L.,Dulbecco Telethon Institute | Diamantini A.,Cervello | Orlando V.,Dulbecco Telethon Institute
PLoS Genetics | Year: 2011

Polycomb group (PcG) proteins are part of a conserved cell memory system that conveys epigenetic inheritance of silenced transcriptional states through cell division. Despite the considerable amount of information about PcG mechanisms controlling gene silencing, how PcG proteins maintain repressive chromatin during epigenome duplication is still unclear. Here we identified a specific time window, the early S phase, in which PcG proteins are recruited at BX-C PRE target sites in concomitance with H3K27me3 repressive mark deposition. Notably, these events precede and are uncoupled from PRE replication timing, which occurs in late S phase when most epigenetic signatures are reduced. These findings shed light on one of the key mechanisms for PcG-mediated epigenetic inheritance during S phase, suggesting a conserved model in which the PcG-dependent H3K27me3 mark is inherited by dilution and not by de novo methylation occurring at the time of replication. © 2011 Lanzuolo et al. Source

Discover hidden collaborations