Time filter

Source Type

Gallerani S.,National institute for astrophysics | Gallerani S.,Institut Universitaire de France | Neri R.,Institut Universitaire de France | Maiolino R.,National institute for astrophysics | And 12 more authors.
Astronomy and Astrophysics | Year: 2012

We present one of the first resolved maps of the [CII] 158 μm line, a powerful tracer of the star forming inter-stellar medium, at high redshift. We use the new IRAM PdBI receivers at 350 GHz to map this line in BRI 0952-0115, the host galaxy of a lensed quasar at z = 4.4 previously found to be very bright in [CII] emission. The [CII] emission is clearly resolved and our data allow us to resolve two [CII] lensed images associated with the optical quasar images. We find that the star formation, as traced by [CII], is distributed over a region of about 1 kpc in size near the quasar nucleus, and we infer a star formation surface density 150 M· yr-1 kpc -2, similar to that observed in local ULIRGs. We also reveal another [CII] component, extended over ~12 kpc, and located at about 10 kpc from the quasar. We suggest that this component is a companion disk galaxy, in the process of merging with the quasar host, whose rotation field is distorted by the interaction with the quasar host, and where star formation, although intense, is more diffuse. These observations suggest that galaxy merging at high-z can enhance star formation at the same time in the form of more compact regions, in the vicinity of the accreting black hole, and in more extended star forming galaxies. © 2012 ESO. Source

Ambrogi L.,University of LAquila | De Ona Wilhelmi E.,Institute for Space science CSIC IEEC | Aharonian F.,University of LAquila | Aharonian F.,Dublin Institute of Advanced Studies | Aharonian F.,Max Planck Institute for Nuclear Physics
Astroparticle Physics | Year: 2016

The potential of an array of imaging atmospheric Cherenkov telescopes to detect gamma-ray sources in complex regions has been investigated. The basic characteristics of the gamma-ray instrument have been parameterized using simple analytic representations. In addition to the ideal (Gaussian form) point spread function (PSF), the impact of more realistic non-Gaussian PSFs with tails has been considered. Simulations of isolated point-like and extended sources have been used as a benchmark to test and understand the response of the instrument. The capability of the instrument to resolve multiple sources has been analyzed and the corresponding instrument sensitivities calculated. The results are of particular interest for weak gamma-ray emitters located in crowded regions of the Galactic plane, where the chance of clustering of two or more gamma-ray sources within 1 deg is high. © 2016 Elsevier B.V. All rights reserved. Source

Crocker R.M.,Australian National University | Bicknell G.V.,Australian National University | Taylor A.M.,Dublin Institute of Advanced Studies | Carretti E.,National institute for astrophysics | Carretti E.,CSIRO
Astrophysical Journal | Year: 2015

The Galactic center's giant outflows are manifest in three different, nonthermal phenomena: (1) the hard-spectrum, γ-ray "Fermi bubbles" emanating from the nucleus and extending to |b| ∼ 50°; (2) the hard-spectrum, total-intensity microwave (∼20-40 GHz) "haze" extending to |b| ∼ 35° in the lower reaches of the Fermi bubbles; and (3) the steep-spectrum, polarized, "S-PASS" radio (∼2-20 GHz) lobes that envelop the bubbles and extend to |b|∼ 60°. We find that the nuclear outflows inflate a genuine bubble in each Galactic hemisphere that has the classical structure, working outward, of reverse shock, contact discontinuity (CD), and forward shock. Expanding into the finite pressure of the halo and given appreciable cooling and gravitational losses, the CD of each bubble is now expanding only very slowly. We find observational signatures in both hemispheres of giant, reverse shocks at heights of ∼1 kpc above the nucleus; their presence ultimately explains all three of the nonthermal phenomena mentioned above. Synchrotron emission from shock-reaccelerated cosmic-ray electrons explains the spectrum, morphology, and vertical extent of the microwave haze and the polarized radio lobes. Collisions between shock-reaccelerated hadrons and denser gas in cooling condensations that form inside the CD account for most of the bubbles' γ-ray emissivity. Inverse Compton emission from primary electrons contributes at the 10%-30% level. Our model suggests that the bubbles are signatures of a comparatively weak but sustained nuclear outflow driven by Galactic center star formation over few × 108 yr. © 2015. The American Astronomical Society. All rights reserved. Source

Leurini S.,Max Planck Institute for Radio Astronomy | Menten K.M.,Max Planck Institute for Radio Astronomy | Walmsley C.M.,National institute for astrophysics | Walmsley C.M.,Dublin Institute of Advanced Studies
Astronomy and Astrophysics | Year: 2016

Context. Class I methanol masers are thought to be tracers of interstellar shock waves. However, they have received relatively little attention mostly as a consequence of their low luminosities compared to other maser transitions. This situation has changed recently and Class I methanol masers are now routinely used as signposts of outflow activity especially in high extinction regions. The recent detection of polarisation in Class I lines now makes it possible to obtain direct observational information about magnetic fields in interstellar shocks. Aims. We make use of newly calculated collisional rate coefficients for methanol to investigate the excitation of Class I methanol masers and to reconcile the observed Class I methanol maser properties with model results. Methods.We performed large velocity gradient calculations with a plane-parallel slab geometry appropriate for shocks to compute the pump and loss rates which regulate the interactions of the different maser systems with the maser reservoir. We study the dependence of the pump rate coefficient, the maser loss rate, and the inversion efficiency of the pumping scheme of several Class I masers on the physics of the emitting gas. Results. We predict inversion in all transitions where maser emission is observed. Bright Class I methanol masers are mainly hightemperature (>100 K) high-density (n(H2) 107-108 cm-3) structures with methanol maser emission measures, corresponding to high methanol abundances close to the limits set by collisional quenching. Our model predictions reproduce reasonably well most of the observed properties of Class I methanol masers. Class I masers in the 25 GHz series are the most sensitive to the density of the medium and mase at higher densities than other lines. Moreover, even at high density and high methanol abundances, their luminosity is predicted to be lower than that of the 44 GHz and 36 GHz masers. Our model predictions also reflect the observational result that the 44 GHz line is almost always stronger than the 36 GHz maser. By comparison between observed isotropic photon luminosities and our model predictions, we infer maser beam solid angles of roughly 10-3 steradian. Conclusions. We find that the Class I masers can reasonably be separated into three families: the (J + 1)-1 - J0-E type series, the (J + 1)0 - J1-A type, and the J2 - J1-E lines at 25 GHz. The 25 GHz lines behave in a different fashion from the other masers as they are only inverted at high densities above 106 cm-3 in contrast to other Class I masers. Therefore, the detection of maser activity in all three families is a clear indication of high densities. © ESO 2016. Source

Merello M.,University of Chile | Merello M.,University of Texas at Austin | Bronfman L.,University of Chile | Garay G.,University of Chile | And 4 more authors.
Astrophysical Journal | Year: 2013

We report molecular line and dust continuum observations toward the high-mass star-forming region G331.5-0.1, one of the most luminous regions of massive star formation in the Milky Way, located at the tangent region of the Norma spiral arm, at a distance of 7.5 kpc. Molecular emission was mapped toward the G331.5-0.1 GMC in the CO(J = 1 → 0) and C18O(J = 1 → 0) lines with NANTEN, while its central region was mapped in CS(J = 2 → 1 and J = 5 → 4) with SEST, and in CS(J = 7 → 6) and 13CO(J = 3 → 2) with ASTE. Continuum emission mapped at 1.2 mm with SIMBA and at 0.87 mm with LABOCA reveal the presence of six compact and luminous dust clumps, making this source one of the most densely populated central regions of a GMC in the Galaxy. The dust clumps are associated with molecular gas and they have the following average properties: size of 1.6 pc, mass of 3.2 × 10 3 M ⊙, molecular hydrogen density of 3.7 × 104 cm-3, dust temperature of 32 K, and integrated luminosity of 5.7 × 105 L⊙, consistent with values found toward other massive star-forming dust clumps. The CS and 13CO spectra show the presence of two velocity components: a high-velocity component at -89 km s-1, seen toward four of the clumps, and a low-velocity component at -101 km s-1 seen toward the other two clumps. Radio continuum emission is present toward four of the molecular clumps, with spectral index estimated for two of them of 0.8 ± 0.2 and 1.2 ± 0.2. A high-velocity molecular outflow is found at the center of the brightest clump, with a line width of 26 km s-1 (FWHM) in CS(J = 7 → 6). Observations of SiO(J = 7 → 6 and J = 8 → 7), and SO(JK = 88 → 77 and JK = 87 → 76) lines provide estimates of the gas rotational temperature toward this outflow >120 K and >75 K, respectively. © 2013. The American Astronomical Society. All rights reserved. Source

Discover hidden collaborations