Los Altos, CA, United States
Los Altos, CA, United States

DSP Group, Inc. is a provider of chipsets for VoIP, multimedia, and digital cordless applications. Founded in 1987 with headquarters in San Jose, California, DSP Group employs over 400 people at three US sites and offices in Germany, Scotland, Israel, India, Hong Kong and Japan. Wikipedia.


Time filter

Source Type

An integrated circuit that includes a die with an active radio frequency (RF) unit embedded thereon; a first port for receiving an output signal from the active RF unit; a harmonic filter that comprises a first harmonic filter inductor; and a first RF inductive load that is electrically coupled to the first port and is magnetically coupled to the first harmonic filter inductor.


A biasing device for direct current (DC) biasing a linear power amplifier that comprises multiple linear power amplifier circuits that are ideally identical to each other; wherein the biasing device may include a replica circuit that is a replica of a linear power amplifier circuit of the multiple linear power amplifier circuits; and a bias control circuit; wherein the bias control circuit is configured to feed the replica circuit with one or more DC biasing signals thereby maintaining at a constant value a replica DC current that is consumed by the replica circuit, and maintaining at a fixed value a replica DC voltage of a replica output node of the replica circuit; and wherein the replica circuit is coupled the multiple linear power amplifier circuits and is configured to supply DC voltage bias signals that force each linear power amplifier circuit of the multiple linear power amplifier circuits to consume a linear power amplifier circuit DC current that equals the replica DC current, when the linear power amplifier circuit is fed with a linear power amplifier DC voltage that either equals the replica DC voltage or differs from the replica DC voltage by a fraction of the replica DC voltage.


A method for charge-reuse, the method may include performing multiple repetitions of the steps of: operating a second capacitive load while the second capacitive load is disconnected from a first capacitive load; wherein the second capacitive load is a Microelectromechanical systems (MEMS) capacitive load or a Nanoelectromechanical systems (NEMS) capacitive load; electrically coupling a first capacitive load to a second capacitive load via a path that comprises an inductor; charging the first capacitive load with a second charge provided from the second capacitive load; electrically disconnecting the first capacitive load, the second capacitive load and the inductor from each other; feeding the inductor with a supply current provided by a supply circuit; disconnecting the inductor from the supply circuit and coupling the inductor to the first capacitive load; charging the first capacitive load by the inductor; electrically coupling the first capacitive load to the second capacitive load via the path that comprises the inductor; charging the second capacitive load with a first charge provided from the first capacitive load; and operating the second capacitive load while the second capacitive load is disconnected from the first capacitive load.


A novel and useful linear, efficient, smart wideband CMOS hybrid power amplifier that combined an analog linear amplification path and a digital power amplification (DPA) path. PA path control logic analyzes the input I and Q signals and determines which amplification paths to steer the input I and Q signals to. The analog linear amplification path comprises digital to analog converters for both I and Q paths and one or more analog linear power amplifiers. The digital power amplification path comprises I and Q up-sampling circuits and I and Q RF DAC circuits (e.g., digital PA circuits). In operation, the PA path control logic compares the I and Q signals to thresholds (which may or may not be different) and based on the comparisons, selects one or more paths for the input I and Q signals. Whether the signals from the analog and digital amplification paths are to be combined or selected (i.e. switched), the PA path control circuit is operative to generate select (switch) control signals which are applied to summer/selector elements which generate the output of the hybrid PA.


Patent
DSP Group | Date: 2016-03-17

A method of charge reuse, the method may include repeating the steps of: electrically coupling a first group of capacitive loads to a second group of capacitive loads; wherein the capacitive loads of the first group and of the second group are Microelectromechanical systems (MEMS) capacitive loads or Nanoelectromechanical systems (NEMS) capacitive loads; charging the second group with a first charge provided from the first group; electrically disconnecting the first group from the second group; operating the second group while using the first charge; electrically coupling the first group to the second group; charging the first group with a second charge provided from the second group; electrically disconnecting the first group from the second group; and operating the first group while using the second charge.


Patent
DSP Group | Date: 2016-03-17

A micro-electromechanical system (MEMS) device that may include a substrate, support structures and functional elements; wherein the functional elements are included in a plurality of functional layers, the plurality of functional layers are spaced apart from each other; wherein the support structures are conductive and are configured to provide structural support to the plurality of functional layers; wherein each functional element is electrically coupled to at least one of the support structures; and wherein the support structures are spaced apart from each other.


Patent
DSP Group | Date: 2016-03-16

A micro-electromechanical system (MEMS) device that comprises a substrate, support structures, functional elements and conductive paths that comprise conductive elements; wherein the functional elements are included in a plurality of functional layers, the plurality of functional layers are spaced apart from each other; wherein the support structures are configured to provide structural support to the plurality of functional layers; wherein each functional layer is coupled to a conducting interface via a conductive path that is associated with the functional layer; and wherein the support structures comprise lateral etch stop elements.


Patent
DSP Group | Date: 2016-06-02

A method for detecting whispered speech of a user of a mobile computerized device, the method comprises: detecting, by the mobile computerized device, whispered speech context; and attempting to detect, by the mobile computerized device and by using whispered speech detection parameters, the whispered speech; and wherein at least one whispered speech detection parameter of the whispered speech detection parameters differs from at least one corresponding non-whispered speech parameter that is used for detecting non-whispered speech.


Patent
DSP Group | Date: 2016-06-23

A two-port air pump speaker that includes at least two active, phase-modulated, bi-directional shutters and an ultrasonic pumping chamber having at least two ports; a first port facing towards the listener, the forward port, and a second port facing another direction, the backward port which may be behind an acoustic baffle or inside a speaker enclosure. A two-port speaker with two active steering shutters can create continuous bi-directional airflow which leads to low distortion reproduction of low audio frequencies. The same improved design can be used also for other applications where acoustic modulation is required, especially in ultrasonic frequencies.


Patent
DSP Group | Date: 2016-03-21

A MEMS speaker that may include a membrane positioned in a first plane, wherein the membrane may be configured to oscillate at a first frequency thereby generating an ultrasonic acoustic signal; and an acoustic modulator that may include a blind and a shutter; wherein the blind may be positioned in a second plane; wherein the shutter may be positioned in a third plane; wherein the first plane, the second plane and the third plane may be substantially separated from each other; and wherein the acoustic modulator may be configured to (a) receive or generate a shutter control signal and a blind control signal, and (b) modulate, in response to the shutter control signal and the blind control signal, the ultrasonic acoustic signal such that an audio signal may be generated.

Loading DSP Group collaborators
Loading DSP Group collaborators