Rotterdam, Netherlands
Rotterdam, Netherlands

Time filter

Source Type

Alves M.M.,Dr. Molewaterplein | Sribudiani Y.,Dr. Molewaterplein | Brouwer R.W.W.,Erasmus Medical Center | Brouwer R.W.W.,Netherlands Bioinformatics Center | And 17 more authors.
Developmental Biology | Year: 2013

Finding genes for complex diseases has been the goal of many genetic studies. Most of these studies have been successful by searching for genes and mutations in rare familial cases, by screening candidate genes and by performing genome wide association studies. However, only a small fraction of the total genetic risk for these complex genetic diseases can be explained by the identified mutations and associated genetic loci. In this review we focus on Hirschsprung disease (HSCR) as an example of a complex genetic disorder. We describe the genes identified in this congenital malformation and postulate that both common 'low penetrant' variants in combination with rare or private 'high penetrant' variants determine the risk on HSCR, and likely, on other complex diseases. We also discuss how new technological advances can be used to gain further insights in the genetic background of complex diseases. Finally, we outline a few steps to develop functional assays in order to determine the involvement of these variants in disease development. © 2013 Elsevier Inc.


Veenma D.,Dr. Molewaterplein | Brosens E.,Dr. Molewaterplein | De Jong E.,Dr. Molewaterplein | Van De Ven C.,Dr. Molewaterplein | And 3 more authors.
European Journal of Human Genetics | Year: 2012

The occurrence of phenotypic differences between monozygotic (MZ) twins is commonly attributed to environmental factors, assuming that MZ twins have a complete identical genetic make-up. Yet, recently several lines of evidence showed that both genetic and epigenetic factors could have a role in phenotypic discordance after all. A high occurrence of copy number variation (CNV) differences was observed within MZ twin pairs discordant for Parkinson's disease, thereby stressing on the importance of post-zygotic mutations as disease-predisposing events. In this study, the prevalence of discrepant CNVs was analyzed in discordant MZ twins of the Esophageal Atresia (EA) and Congenital Diaphragmatic Hernia (CDH) cohort in the Netherlands. Blood-derived DNA from 11 pairs (7 EA and 4 CDH) was screened using high-resolution SNP arrays. Results showed an identical copy number profile in each twin pair. Mosaic chromosome gain or losses could not be detected either with a detection threshold of 20%. Some of the germ-line structural events demonstrated in five out of eleven twin pairs could function as a susceptible genetic background. For example, the 177-Kb loss of chromosome 10q26 in CDH pair-3 harbors the TCF7L2 gene (Tcf4 protein), which is implicated in the regulation of muscle fiber type development and maturation. In conclusion, discrepant CNVs are not a common cause of twin discordancy in these investigated congenital anomaly cohorts. © 2012 Macmillan Publishers Limited All rights reserved.


PubMed | Dr Molewaterplein
Type: Journal Article | Journal: Current radiopharmaceuticals | Year: 2015

Peptide receptor radionuclide therapy (PRRT) using radiolabeled somatostatin analogs has become an established procedure for the treatment of patients suffering from inoperable neuroendocrine cancers over-expressing somatostatin receptors. Success of PRRT depends on the availability of the radiolabeled peptide with adequately high specific activity, so that required therapeutic efficacy can be achieved without saturating the limited number of receptors available on the target lesions. Specific activity of the radionuclide and the radiolabeled somatostatin analog are therefore an important parameters. Although these analogs have been investigated and improved, and successfully applied for PRRT for more than 15 years, there are still many possibilities for further improvements that fully exploit PRRT with 177Lu-DOTA-TATE. The here summarized data presented herein on increased knowledge of the components of 177Lu-DOTA-TATE (especially the purity of 177Lu and specific activity of 177Lu) and the reaction kinetics during labeling 177Lu-DOTA-TATE clearly show that the peptide dose and dose in GBq can be varied. Here we present an overview of the development, formulation and optimisation of 177Lu-DOTA-TATE, mainly addressing radiochemical parameters.

Loading Dr. Molewaterplein collaborators
Loading Dr. Molewaterplein collaborators