Dr Hari Singh Gour University

Sagar, India

Dr. Hari Singh Gour University , formerly and more popularly known as Sagar University or University of Saugor, is a Central University in the city of Sagar, the state of Madhya Pradesh or , India. It was formerly named "Sagar University" when founded on 18 July 1946, during the British Raj. In February 1983 the name was changed to that of Sir Hari Singh Gour, the University's Founder, by the State Government. It is the oldest university in Madhya Pradesh. Wikipedia.

Time filter

Source Type

Gupta P.N.,Dr Hari Singh Gour University | Vyas S.P.,Dr Hari Singh Gour University
Colloids and Surfaces B: Biointerfaces | Year: 2011

In the present investigation hepatitis B surface antigen (HBsAg) encapsulated liposomes were developed and coupled with Ulex europaeus agglutinin 1 (UEA-1) to increase transmucosal uptake by M-cells of the Peyer's patches. The liposomes were characterized for shape, size, polydispersity and encapsulation efficiency. Bovine submaxillary mucin (BSM) was used as a biological model for the in vitro determination of lectin activity and specificity. Dual staining technique was used to investigate targeting of lectinized liposomes to the M-cells. Anti-HBsAg IgG response in serum and anti-HBsAg sIgA level in various mucosal fluids was estimated by using ELISA, following oral immunization with lectinized and non-lectinized liposomes in Balb/c mice. Additionally, interleukin-2 (IL-2) and interferon-γ (IFN-γ) level in the spleen homogenates was determined. The results suggest that lectinized liposomes were successfully developed, exhibited increased activity with BSM as compared to non-lectinized liposomes and α-l-fucose specificity of the lectinized liposomes was also maintained. The lectinized liposomes were predominantly targeted to the M-cells. The serum anti-HBsAg IgG titre obtained after 3 consecutive days oral immunizations with HBsAg encapsulated lectinized liposomes and boosting after third week was comparable with the titre recorded after single intramuscular prime and third week boosting with alum-HBsAg. Moreover, lectinized liposomes induced higher sIgA level in mucosal secretions and cytokines level in the spleen homogenates. The results showed that the developed surface modified liposomes could be a potential module for the development of effective mucosal vaccines. © 2010 Elsevier B.V.

Gajbhiye V.,Dr Hari Singh Gour University | Jain N.K.,Dr Hari Singh Gour University
Biomaterials | Year: 2011

Polysorbate 80 (P80) anchored poly(propyleneimine) (PPI) dendritic nanoconjugate was developed and evaluated for targeting anti-cancer drug, docetaxel (DTX) to the brain tumor. In vitro cytotoxicity studies of free DTX, DTX-PPI and DTX-P80-PPI dendrimers were carried out using U87MG human glioblastoma cell line. The in vivo anti-cancer activity in brain tumor bearing rats revealed that DTX loaded P80 conjugated dendrimers reduced the tumor volume extremely significantly (p < 0.0001; more than 50%). The median survival time for brain tumor bearing rats treated with DTX-P80-PPI dendrimers (42 days) was extended very significantly as compared to DTX-PPI (23 days; p < 0.001), receptor blocked group (15 days; p < 0.001) and free DTX (18 days; p < 0.001). Gamma scintigraphy and biodistribution studies further confirmed the targeting efficiency and higher biodistribution of ligand conjugated dendrimer into the brain. The results concluded that the developed nanoconjugate has potential to deliver significantly higher amount of drug to brain tumor for improved therapeutic outcome. © 2011 Elsevier Ltd.

Mehra N.K.,Dr Hari Singh Gour University | Mishra V.,Dr Hari Singh Gour University | Jain N.K.,Dr Hari Singh Gour University
Biomaterials | Year: 2014

Carbon nanotubes (CNTs) have emerged as fascinating materials, exhibiting promising potential in receptor based targeting owing to their unique physicochemical properties (cell membrane penetration, high surface area and drug payload, biocompatibility, easy surface modification, photoluminescence property, and non-immunogenicity etc). The hydrophilicity, a major constrain associated with the first generation of CNTs i.e. pristine CNTs, could be overcome using functionalization techniques. In the last two decades variety of functionalized CNTs ( f-CNTs) i.e. oxidized, amidated, acylated, surfactant and biopolymer-assisted, and biomolecules modified have been developed and utilized as effective, safe, nano sized, and smart systems to deliver a wide range of bioactives in the biological system. The purpose of this review is to examine the various aspects of conjugation and associated conjugation chemistry of various targeting ligands to CNTs for their respective biomedical applications. The various biomolecules have been easily tethered to CNTs surfaces including proteins and amino acid, enzymes, nucleic acid (DNA and siRNA), aptamers, vitamins, monoclonal antibodies, peptides (NGR, RGD and Aniopep-2) and so on, for targeting purposes. © 2013 Elsevier Ltd.

Jain K.,Dr Hari Singh Gour University | Jain N.K.,Dr Hari Singh Gour University
Drug Discovery Today | Year: 2013

Leishmaniasis reveals itself in two forms, cutaneous and visceral, but the later exerts serious complications and may lead to death, if untreated. The availability of limited number of antileishmanial chemotherapeutic agents, the high cost of treatment, growing incidences of resistance to first line drugs as well as severe toxicities associated with the drugs complicate the treatment of visceral leishmaniasis. To overcome these problems, critical investigation of new therapeutic strategies with potential antileishmanial activity and good tolerability are essential. In this review we explore the different facets of novel therapeutic strategies for treatment of visceral leishmaniasis with a purpose to summarize all the possible treatment tactics, which will help scientists working in this arena to implement their research in a systematic manner. © 2013 Elsevier Ltd. All rights reserved.

Marti-Centelles V.,Jaume I University | Pandey M.D.,Jaume I University | Pandey M.D.,Dr Hari Singh Gour University | Burguete M.I.,Jaume I University | Luis S.V.,Jaume I University
Chemical Reviews | Year: 2015

The success of a given macrocyclization reaction involves a very delicate balance of many different factors. First, a proper understanding of the basic thermodynamic and kinetic concepts underlying these processes is essential in defining the strategies to obtain the targeted cyclic structures and the experimental elements to be optimized. essential element for achieving high yields in a macrocyclization process is the appropriate selection of the disconnection site. This defines the reaction used for the key step, which will clearly affect the overall process, but also delineates the nature and structure of the immediate linear precursor. The presence of structural elements, including configurational elements, able to induce a favorable folding of this linear precursor in such a way that both reactive ends approach with the proper orientation provides significant enhancements in macrocyclizations. The use of templates of very different natures is a versatile strategy to overcome the limitations of the other macrocyclization strategies. The use of templates has allowed the preparation of a variety of macrocyclic structures in better yields and usually in shorter reaction times, and often allows easier purification protocols.

Kesharwani P.,Dr Hari Singh Gour University | Tekade R.K.,University of Hawaii at Hilo | Jain N.K.,Dr Hari Singh Gour University
Biomaterials | Year: 2014

Dendrimer-mediated delivery of bioactive is a successful and widely explored concept. This paper desribes comparative data pertaining to generation dependent cancer targeting propensity of Poly(propyleneimine) (PPI) dendrimers. This debut report reportsthe drug targeting and antciancer potential of different dendrimer generations. PPI dendrimers of different generations (3.0G, 4.0G and 5.0G) were synthesized and loaded with Melphalan. Results from loading, hemolysis, hematologic, cytotoxicty and flow cytometry assay depicted that as the generation of dendrimer increased from fourth to fifth, the only parameter i.e. toxicty is increased exponentionally. However, others parameters, i.e. loading, sustained release behavior, and targeting efficacy increased negligibly. Kaplan-Meier survival curves clearly depicted comparable therapeutic potential of PPI4M with PPI5M. Invivo investigations in Balb/c mice again favored 4.0G PPI dendrimer to be preferable nanocarrier for anticancer drug delivery owing to analogous anticancer potential. The outcomes of the investigation evidently projects 4.0G PPI dendrimer over 3.0G and 5.0G dendrimer in respect of its drug delivery benefit as well as superior biocompatibility. Thus, much against the common belief, 4.0G PPI dendrimers may be considered to be optimum in respect of drug delivery precluding the use of much more toxic 5.0G PPI dendrimer, which offers no benefit over 4.0G. © 2014 Elsevier Ltd.

Jain K.,Dr Hari Singh Gour University | Kesharwani P.,Dr Hari Singh Gour University | Gupta U.,Dr Hari Singh Gour University | Jain N.K.,Dr Hari Singh Gour University
Biomaterials | Year: 2012

Carbohydrates not only represent a vast potential as structure building blocks of living cells but also have proved as a promising candidate for drug delivery. Glycosylation of nanocarriers instructs some gratifying characteristic, which leads to the evolution of promising delivery systems. Some path-breaking advantages of glycosylated carriers include the engineered release profile of bioactives when introduced into biological system. Being natural product of living system these carriers also upshots as a multifaceted drug delivery vehicle and reduces the toxicity associated with unmodified drug carrier and therapeutic agent. An additional attribute of these carriers is to alter the pharmacokinetic profile of drugs positively with stabilization of drug carrier. The presence of lectin receptors on different cell surfaces makes the glycosylated carrier appreciable for targeted delivery of drugs to improve their therapeutic index. Active participation of some lectin receptors in immune responses to antigen overlaid the application of glycosylated carriers in delivery of antigen and immunotherapy for treatment of ailments like cancer. These advantages revealed the promising potential of glycosylated carriers in each perspective of drug delivery. Collectively this review presents an overview of different applications of glycosylated carriers, with a focus on their applicability in development of a nanoconstruct with GRAS status. © 2012 Elsevier Ltd.

Kesharwani P.,Dr Hari Singh Gour University | Gajbhiye V.,Dr Hari Singh Gour University | Jain N.K.,Dr Hari Singh Gour University
Biomaterials | Year: 2012

Increasing knowledge about molecular mechanisms of endogenous RNA interference (RNAi) and small interfering RNAs (siRNAs) has been incorporated into innovative nucleic acid medicines for treatment of diseases such as cancers. Although RNAi and siRNA have the potential to become powerful therapeutic drugs, their delivery to the target site represents a major challenge. The design and creation of nanocarriers for the safe and efficient delivery of siRNA towards their potential applications site is one of the challenging and rapidly growing areas of research since they have to overcome the commonly encountered biological barriers. In this review, we discuss the recent nanotechnological strategies for siRNA delivery by using different carriers such as liposomes, dendrimers and carbon nanotubes. © 2012 Elsevier Ltd.

Yadav R.S.,Dr Hari Singh Gour University | Tiwari N.K.,University of Lucknow
Molecular Neurobiology | Year: 2014

Various types of lipids and their metabolic products associated with the biological membrane play a crucial role in signal transduction, modulation, and activation of receptors and as precursors of bioactive lipid mediators. Dysfunction in the lipid homeostasis in the brain could be a risk factor for the many types of neurodegenerative disorders, including Alzheimer’s disease, Huntington’s disease, Parkinson’s disease, and amyotrophic lateral sclerosis. These neurodegenerative disorders are marked by extensive neuronal apoptosis, gliosis, and alteration in the differentiation, proliferation, and development of neurons. Sphingomyelin, a constituent of plasma membrane, as well as its primary metabolite ceramide acts as a potential lipid second messenger molecule linked with the modulation of various cellular signaling pathways. Excessive production of reactive oxygen species associated with enhanced oxidative stress has been implicated with these molecules and involved in the regulation of a variety of different neurodegenerative and neuroinflammatory disorders. Studies have shown that alterations in the levels of plasma lipid/cholesterol concentration may result to neurodegenerative diseases. Alteration in the levels of inflammatory cytokines and mediators in the brain has also been found to be implicated in the pathophysiology of neurodegenerative diseases. Although several mechanisms involved in neuronal apoptosis have been described, the molecular mechanisms underlying the correlation between lipid metabolism and the neurological deficits are not clearly understood. In the present review, an attempt has been made to provide detailed information about the association of lipids in neurodegeneration especially in Alzheimer’s disease. © 2014, Springer Science+Business Media New York.

Bagre A.P.,Dr Hari Singh Gour University
International journal of pharmaceutics | Year: 2013

The objective of present research work was to develop alginate coated chitosan core shell nanoparticles (Alg-CS-NPs) for oral delivery of low molecular weight heparin, enoxaparin. Chitosan nanoparticles (CS-NPs) were synthesized by ionic gelation of chitosan using sodium tripolyphosphate. Core shell nanoparticles were prepared by coating CS-NPs with alginate solution under mild agitation. The Alg-CS-NPs were characterized for surface morphology, surface coating, particle size, polydispersity index, zeta potential, drug loading and entrapment efficiency using SEM, Zeta-sizer, FTIR and DSC techniques. Alginate coating increased the size of optimized chitosan nanoparticles from around 213 nm to about 335 nm as measured by dynamic light scattering in zeta sizer and further confirmed by SEM analysis. The performance of optimized enoxaparin loaded Alg-CS-NPs was evaluated by in vitro drug release studies, in vitro permeation study across intestinal epithelium, in vivo venous thrombosis model, particulate uptake by intestinal epithelium using fluorescence microscopy and pharmacokinetic studies in rats. Coating of alginate over the CS-NPs improved the release profile of enoxaparin from the nanoparticles for successful oral delivery. In vitro permeation studies elucidated that more than 75% enoxaparin permeated across the intestinal epithelium with Alg-CS-NPs. The Alg-CS-NPs significantly increased (p<0.05) the oral bioavailability of enoxaparin in comparison to plain enoxaparin solution as revealed by threefold increase in AUC of plasma drug concentration time curve and around 60% reduction in thrombus formation in rat venous thrombosis model. The core shell Alg-CS-NPs showed promising potential for oral delivery and significantly enhanced the in vivo oral absorption of enoxaparin. Copyright © 2013 Elsevier B.V. All rights reserved.

Loading Dr Hari Singh Gour University collaborators
Loading Dr Hari Singh Gour University collaborators