Dr Anthony Volpe Research Center

Gaithersburg, MD, United States

Dr Anthony Volpe Research Center

Gaithersburg, MD, United States
SEARCH FILTERS
Time filter
Source Type

Lopez Perez D.,U.S. National Institute of Standards and Technology | Lopez Perez D.,U.S. Food and Drug Administration | Baker P.J.,U.S. National Institute of Standards and Technology | Pintar A.L.,U.S. National Institute of Standards and Technology | And 3 more authors.
Biofouling | Year: 2017

Robust evaluation and comparison of antimicrobial technologies are critical to improving biofilm prevention and treatment. Herein, a multi-pronged experimental framework and statistical models were applied to determine the effects of quaternary pyridinium salt, 4-acetyl-1-hexadecylpyridin-1-ium iodide (QPS-1), on Streptococcus mutans in the planktonic, biofilm-forming and biofilm cell states. Minimum inhibitory and bactericidal concentrations (MIC and MBC, respectively) were determined via common methods with novel application of statistical approaches combining random effects models and interval censored data to estimate uncertainties. The MICs and MBCs for planktonic and biofilm-forming states ranged from 3.12 to 12.5 μg ml−1, with biofilm values only ≈ 8 times higher. Potent anti-biofilm activity and reactive structural features make QPS-1 a promising antibacterial additive for dental and potentially other biomedical devices. Together, the experimental framework and statistical models provide estimates and uncertainties for effective antimicrobial concentrations in multiple cell states, enabling statistical comparisons and improved characterization of antibacterial agents. ©, This work was authored as part of the Contributor's official duties as an Employee of the United States Government and is therefore a work of the United States Government. In accordance with 17 USC. 105, no copyright protection is available for such works under US Law.


Kim J.J.,University of California at Los Angeles | Kim J.J.,Dr Anthony Volpe Research Center | Duan L.,University of California at Los Angeles | Tu T.G.,University of California at Los Angeles | And 5 more authors.
Genomics Data | Year: 2014

Potential teratogenic effects of alcohol on fetal development have been documented. Especially studies have demonstrated deleterious effect of ethanol exposure on neuronal development in animal models and on the maintenance and differentiation of neuronal precursor cells derived from stem cells. To better understand the molecular effect of alcohol on the process of neural differentiation, we have performed gene expression microarray analysis on human embryonic stem cells being directed to neural rosettes and neural precursor cells in the presence of ethanol treatment. Here we provide detailed experimental methods, analysis and information associated with our data deposited into Gene Expression Omnibus (GEO) under GSE56906. Our data provide scientific insight on potential molecular effects of fetal alcohol exposure on neural differentiation of early embryo development. © 2014 The Authors.


PubMed | Florida State University, Louisiana State University and Dr Anthony Volpe Research Center
Type: Journal Article | Journal: ACS applied materials & interfaces | Year: 2016

A facile approach using click chemistry is demonstrated for immobilization of metalloporphyrins onto the surface of silica-coated iron oxide particles. Oleic-acid stabilized iron oxide nanocrystals were prepared by thermal decomposition of iron(III) acetylacetonate. Their crystallinity, morphology, and superparamagnetism were determined using X-ray diffraction, transmission electron microscopy, and a superconducting quantum interference device. Monodisperse core-shell particles were produced in the silica-coating of iron oxide via microemulsion synthesis. Surface modification of these particles was performed in two steps, which included the reaction of silica-coated iron oxide particles with 3-bromopropyltrichlorosilane, followed by azido-functionalization with sodium azide. Monoalkylated porphyrins were prepared using the Williamson ether synthesis of commercially available tetra(4-hydroxyphenyl) porphyrin with propargyl bromide in the presence of a base. (1)H NMR and matrix-assisted laser desorption ionization confirmed the identity of the compounds. The prepared monoalkyne porphyrins were zinc-metalated prior to their introduction to azide-functionalized, silica-coated iron oxide particles in the click reaction. X-ray photoelectron spectroscopy, thermogravimetric analysis, and Fourier transform infrared spectroscopy were used to characterize the surface chemistry after each step in the reaction. In addition, particle size was determined using dynamic light scattering and microscopy. The presented methodology is versatile and can be extended to other photoreactive systems, such as phthalocyanines and boron-dipyrromethane, which may lead to new materials for optical, photonic, and biological applications.


Marovic D.,University of Zagreb | Tarle Z.,University of Zagreb | Hiller K.-A.,University of Regensburg | Muller R.,University of Regensburg | And 3 more authors.
Dental Materials | Year: 2014

Objectives The aim of this study was to examine the influence of the addition of glass fillers with different sizes and degrees of silanization percentages to remineralizing composite materials based on amorphous calcium phosphate (ACP). Methods Four different materials were tested in this study. Three ACP based materials: 0-ACP (40 wt% ACP, 60 wt% resin), Ba-ACP (40 wt% ACP, 50 wt% resin, 10 wt% barium-glass) and Sr-ACP (40 wt% ACP, 50 wt% resin, 10 wt% strontium-glass) were compared to the control material, resin modified glass ionomer (Fuji II LC capsule, GC, Japan). The fillers and composites were characterized using scanning electron microscopy. Flexural strength and modulus were determined using a three-point bending test. Calcium and phosphate ion release from ACP based composites was measured using inductively coupled plasma atomic emission spectroscopy. Results The addition of barium-glass fillers (35.4 (29.1-42.1) MPa) (median (25-75%)) had improved the flexural strength in comparison to the 0-ACP (24.8 (20.8-36.9) MPa) and glass ionomer control (33.1 (29.7-36.2) MPa). The admixture of strontium-glass (20.3 (19.5-22.2) MPa) did not have any effect on flexural strength, but significantly improved its flexural modulus (6.4 (4.8-6.9) GPa) in comparison to 0-ACP (3.9 (3.4-4.1) GPa) and Ba-ACP (4.6 (4.2-6.9) GPa). Ion release kinetics was not affected by the addition of inert fillers to the ACP composites. Significance Incorporation of barium-glass fillers to the composition of ACP composites contributed to the improvement of flexural strength and modulus, with no adverse influence on ion release profiles. © 2014 Academy of Dental Materials.


Wang P.,University of Maryland, Baltimore | Wang P.,University of Sichuan | Liu X.,University of Maryland, Baltimore | Liu X.,University of Sichuan | And 9 more authors.
Acta Biomaterialia | Year: 2015

Human induced pluripotent stem cells (hiPSCs) are an exciting cell source with great potential for tissue engineering. Human bone marrow mesenchymal stem cells (hBMSCs) have been used in clinics but are limited by several disadvantages, hence alternative sources of MSCs such as umbilical cord MSCs (hUCMSCs) are being investigated. However, there has been no report comparing hiPSCs, hUCMSCs and hBMSCs for bone regeneration. The objectives of this pilot study were to investigate hiPSCs, hUCMSCs and hBMSCs for bone tissue engineering, and compare their bone regeneration via seeding on biofunctionalized macroporous calcium phosphate cement (CPC) in rat cranial defects. For all three types of cells, approximately 90% of the cells remained alive on CPC scaffolds. Osteogenic genes were up-regulated, and mineral synthesis by cells increased with time in vitro for all three types of cells. The new bone area fractions at 12 weeks (mean ± sd; n = 6) were (30.4 ± 5.8)%, (27.4 ± 9.7)% and (22.6 ± 4.7)% in hiPSC-MSC-CPC, hUCMSC-CPC and hBMSC-CPC respectively, compared to (11.0 ± 6.3)% for control (p < 0.05). No significant differences were detected among the three types of stem cells (p > 0.1). New blood vessel density was higher in cell-seeded groups than control (p < 0.05). De novo bone formation and participation by implanted cells was confirmed via immunohistochemical staining. In conclusion, (1) hiPSCs, hUCMSCs and hBMSCs greatly enhanced bone regeneration, more than doubling the new bone amount of cell-free CPC control; (2) hiPSC-MSCs and hUCMSCs represented viable alternatives to hBMSCs; (3) biofunctionalized macroporous CPC-stem cell constructs had a robust capacity for bone regeneration.


PubMed | University of Sichuan, University of Maryland, Baltimore, Southern Medical University, Dr Anthony Volpe Research Center and University of Maryland Baltimore County
Type: | Journal: Acta biomaterialia | Year: 2015

Human induced pluripotent stem cells (hiPSCs) are an exciting cell source with great potential for tissue engineering. Human bone marrow mesenchymal stem cells (hBMSCs) have been used in clinics but are limited by several disadvantages, hence alternative sources of MSCs such as umbilical cord MSCs (hUCMSCs) are being investigated. However, there has been no report comparing hiPSCs, hUCMSCs and hBMSCs for bone regeneration. The objectives of this pilot study were to investigate hiPSCs, hUCMSCs and hBMSCs for bone tissue engineering, and compare their bone regeneration via seeding on biofunctionalized macroporous calcium phosphate cement (CPC) in rat cranial defects. For all three types of cells, approximately 90% of the cells remained alive on CPC scaffolds. Osteogenic genes were up-regulated, and mineral synthesis by cells increased with time in vitro for all three types of cells. The new bone area fractions at 12weeks (meansd; n=6) were (30.45.8)%, (27.49.7)% and (22.64.7)% in hiPSC-MSC-CPC, hUCMSC-CPC and hBMSC-CPC respectively, compared to (11.06.3)% for control (p<0.05). No significant differences were detected among the three types of stem cells (p>0.1). New blood vessel density was higher in cell-seeded groups than control (p<0.05). De novo bone formation and participation by implanted cells was confirmed via immunohistochemical staining. In conclusion, (1) hiPSCs, hUCMSCs and hBMSCs greatly enhanced bone regeneration, more than doubling the new bone amount of cell-free CPC control; (2) hiPSC-MSCs and hUCMSCs represented viable alternatives to hBMSCs; (3) biofunctionalized macroporous CPC-stem cell constructs had a robust capacity for bone regeneration.


Hoffman K.,Dr Anthony Volpe Research Center | Skrtic D.,Dr Anthony Volpe Research Center | Sun J.,Dr Anthony Volpe Research Center | Tutak W.,Dr Anthony Volpe Research Center
Tissue Engineering - Part C: Methods | Year: 2015

Electrospun polymer nanofibers have multiple applications in the tissue engineering field despite limited cell penetration within the scaffolds and slow synthesis rates. Airbrushing, a proposed alternative to traditional electrospinning, is a technique capable of synthesizing open structure nanofiber scaffolds at high rates. In this study, three biocompatible polymers - poly-D,L-lactic acid (P-DL-LA), polycaprolactone (PCL), and poly(methyl methacrylate) (PMMA), were airbrushed to form networks for bone tissue regeneration. All three polymers were loaded with up to 20% (w/w) zirconium-modified amorphous calcium phosphate (Zr-ACP). A simple one-step mix and straightforward material deposition yielded open structure networks with well-distributed Zr-ACP. Cell penetration within the airbrushed scaffolds was found to be more than twice the cell penetration within conventional electrospun networks. The airbrushed polymer network supported cell growth and differentiation. Cells grown on the Zr-ACP in P-DL-LA fibers exhibited improved levels of osteocalcin protein with an increase in the Zr-ACP content by day 16. This airbrushing method promises to be a viable and attractive alternative to currently used electrospinning techniques in the formation of composite 3D nanofiber scaffolds for tissue engineering applications. © Mary Ann Liebert, Inc.


Sun J.,Dr Anthony Volpe Research Center | Watson S.S.,U.S. National Institute of Standards and Technology | Allsopp D.A.,Dr Anthony Volpe Research Center | Stanley D.,U.S. National Institute of Standards and Technology | Skrtic D.,Dr Anthony Volpe Research Center
Dental Materials | Year: 2015

Objective: The unique photo-catalytic activities (PCAs) of titanium dioxide nanoparticles (TiO2 NPs) made them attractive in many potential applications in medical devices. The objective of this study is to optimize the benefits of PCAs of TiO2 NPs through varying chemical structures of dimethacrylate resins. Methods: TiO2 NPs were functionalized to improve the PCAs and bonding to the resins. The PCAs of TiO2 NPs were evaluated using electron paramagnetic resonance (EPR) and UV-vis spectroscopy to determine the amount of the radicals generated and the energy required for their production, respectively. The beneficial effects of the radicals were assessed through: (1) the improvement of degree of vinyl conversion (DC) and (2) modification of resin hydrophilicity. One-way ANOVA with a 95% confidence interval was used to indicate the significant differences between the experimental groups. Results: EPR and UV-vis results clearly showed that the functionalization of TiO2 NPs enhanced PCAs in terms of generating radicals under visible light irradiation. The presence of hydroxyl and carboxylic acid functionalities played an important role in DC enhancement and hydrophilicity modification. The DC could be increased up to 22% by adding only 0.1wt% TiO2 NPs. Viscosity of the resins had minimal or no role in DC improvement through TiO2 NPs. In resins with abundant hydroxyl groups, radicals were more effective in making the resin more hydrophilic. Significance: Knowledge learned from this study will help formulating nano-composites with optimized use of TiO2 PCAs as co-initiators for photo-polymerization, additives for making super-hydrophilic materials and/or antibacterial agents. © 2015 Academy of Dental Materials.


PubMed | Dr Anthony Volpe Research Center
Type: Journal Article | Journal: Tissue engineering. Part C, Methods | Year: 2015

Electrospun polymer nanofibers have multiple applications in the tissue engineering field despite limited cell penetration within the scaffolds and slow synthesis rates. Airbrushing, a proposed alternative to traditional electrospinning, is a technique capable of synthesizing open structure nanofiber scaffolds at high rates. In this study, three biocompatible polymers-poly-D,L-lactic acid (P-DL-LA), polycaprolactone (PCL), and poly(methyl methacrylate) (PMMA), were airbrushed to form networks for bone tissue regeneration. All three polymers were loaded with up to 20% (w/w) zirconium-modified amorphous calcium phosphate (Zr-ACP). A simple one-step mix and straightforward material deposition yielded open structure networks with well-distributed Zr-ACP. Cell penetration within the airbrushed scaffolds was found to be more than twice the cell penetration within conventional electrospun networks. The airbrushed polymer network supported cell growth and differentiation. Cells grown on the Zr-ACP in P-DL-LA fibers exhibited improved levels of osteocalcin protein with an increase in the Zr-ACP content by day 16. This airbrushing method promises to be a viable and attractive alternative to currently used electrospinning techniques in the formation of composite 3D nanofiber scaffolds for tissue engineering applications.


PubMed | U.S. National Institute of Standards and Technology and Dr Anthony Volpe Research Center
Type: Journal Article | Journal: Dental materials : official publication of the Academy of Dental Materials | Year: 2016

The unique photo-catalytic activities (PCAs) of titanium dioxide nanoparticles (TiO2 NPs) made them attractive in many potential applications in medical devices. The objective of this study is to optimize the benefits of PCAs of TiO2 NPs through varying chemical structures of dimethacrylate resins.TiO2 NPs were functionalized to improve the PCAs and bonding to the resins. The PCAs of TiO2 NPs were evaluated using electron paramagnetic resonance (EPR) and UV-vis spectroscopy to determine the amount of the radicals generated and the energy required for their production, respectively. The beneficial effects of the radicals were assessed through: (1) the improvement of degree of vinyl conversion (DC) and (2) modification of resin hydrophilicity. One-way ANOVA with a 95% confidence interval was used to indicate the significant differences between the experimental groups.EPR and UV-vis results clearly showed that the functionalization of TiO2 NPs enhanced PCAs in terms of generating radicals under visible light irradiation. The presence of hydroxyl and carboxylic acid functionalities played an important role in DC enhancement and hydrophilicity modification. The DC could be increased up to 22% by adding only 0.1wt% TiO2 NPs. Viscosity of the resins had minimal or no role in DC improvement through TiO2 NPs. In resins with abundant hydroxyl groups, radicals were more effective in making the resin more hydrophilic.Knowledge learned from this study will help formulating nano-composites with optimized use of TiO2 PCAs as co-initiators for photo-polymerization, additives for making super-hydrophilic materials and/or antibacterial agents.

Loading Dr Anthony Volpe Research Center collaborators
Loading Dr Anthony Volpe Research Center collaborators