Entity

Time filter

Source Type


Mackay D.,Trent UniversityPeterborough | Cowan-Ellsberry C.E.,CE ConsultingCincinnati | Powell D.E.,Dow CorningMidland | Woodburn K.B.,Dow CorningMidland | And 3 more authors.
Environmental Toxicology and Chemistry | Year: 2015

The environmental sources, fate, transport, and routes of exposure of decamethylcyclopentasiloxane (D5; CAS no. 541-02-6) are reviewed in the present study, with the objective of contributing to effective risk evaluation and assessment of this and related substances. The present review, which is part of a series of studies discussing aspects of an effective risk evaluation and assessment, was prompted in part by the findings of a Board of Review undertaken to comment on a decision by Environment Canada made in 2008 to subject D5 to regulation as a toxic substance. The present review focuses on the early stages of the assessment process and how information on D5's physical-chemical properties, uses, and fate in the environment can be integrated to give a quantitative description of fate and exposure that is consistent with available monitoring data. Emphasis is placed on long-range atmospheric transport and fate in water bodies receiving effluents from wastewater treatment plants (along with associated sediments) and soils receiving biosolids. The resulting exposure estimates form the basis for assessments of the resulting risk presented in other studies in this series. Recommendations are made for developing an improved process by which D5 and related substances can be evaluated effectively for risk to humans and the environment. © 2015 The Authors. undefined Published by Wiley Periodicals, Inc. Source


Fairbrother A.,ExponentBellevue | Burton G.A.,Cooperative Institute for Limnology and Ecosystems ResearchUniversity of MichiganAnn Arbor | Klaine S.J.,North West University South Africa | Powell D.E.,Dow CorningMidland | And 3 more authors.
Environmental Toxicology and Chemistry | Year: 2015

Decamethylcyclopentasiloxane (D5) is used in personal care products and industrial applications. The authors summarize the risks to the environment from D5 based on multiple lines of evidence and conclude that it presents negligible risk. Laboratory and field studies show that D5 is not toxic to aquatic organisms or benthic invertebrates up to its solubility limit in water or porewater or its sorptive capacity in sediment. Comparison of lipid-normalized internal concentrations with measured concentrations in benthos indicates that field-collected organisms do not achieve toxic levels of D5 in their tissues, suggesting negligible risk. Exposure to D5 resulted in a slight reduction of root biomass in barley at test concentrations 2 orders of magnitude greater than measured D5 levels in biosolids-amended soils and more than twice as high as the maximum calculated sorptive capacity of the soil. No effects were observed in soil invertebrates exposed to similar concentrations, indicating that D5 poses a de minimis risk to the terrestrial environment. High rates of metabolism and elimination of D5 compared with uptake rates from food results in biodilution in the food web rather than biomagnification, culminating in de minimis risk to higher trophic level organisms via the food chain. A fugacity approach substantiates all conclusions that were made on a concentration basis. © 2015 SETAC. Source

Discover hidden collaborations