Dole Nutrition Research Laboratory

Carolina Beach, NC, United States

Dole Nutrition Research Laboratory

Carolina Beach, NC, United States
SEARCH FILTERS
Time filter
Source Type

Root M.M.,Appalachian State University | Mcginn M.C.,Silver Bluff Village | Nieman D.C.,Appalachian State University | Henson D.A.,Appalachian State University | And 4 more authors.
Nutrients | Year: 2012

Previous studies have examined the relationship between specific nutrient and food intakes with limited markers of either inflammation or oxidant status. The objective of this study was to determine if an increase in combined self-reported fruit and vegetable (F&V) intake in a community setting was associated with improved multiple markers of inflammatory and oxidant status. A community group (N = 1000, age 18-85 years, 61% female) gave two fasted blood samples separated by 12 weeks. Blood inflammatory biomarkers included total leukocytes (WBC), plasma C-reactive protein (CRP), interleukin-6 (IL-6), IL-10, tumor necrosis factor-alpha (TNF-α), monocyte chemoattractant protein-1, and granulocyte colony stimulating factor. Measured oxidant status markers were ferric reducing ability of plasma (FRAP), oxygen radical absorbance capacity (ORAC) and plasma F2-isoprostanes. The relation of markers across categories of F&V intake was examined. In analyses controlling for other important dietary and lifestyle factors, IL-6 and TNF-α were significantly lower across categories of increasing F&V intakes (p < 0.008). FRAP and ORAC were significantly higher (p < 0.0001 and p = 0.047 respectively) while F2-isoprostanes was significantly lower (p < 0.0001) across F&V categories. In a community study, several markers of both inflammation and oxidant status were associated in a putatively salutary direction by higher intake of combined F&V, supporting current guidelines suggesting increased F&V consumption for the prevention of chronic diseases. © 2012 by the authors; licensee MDPI, Basel, Switzerland.


Chen H.,North Carolina A&T State University | Parks T.A.,North Carolina A&T State University | Chen X.,North Carolina Central University | Gillitt N.D.,Dole Nutrition Research Laboratory | And 2 more authors.
Journal of Chromatography A | Year: 2011

Black tea consumption has been associated with many health benefits including the prevention of cancer and heart disease. Theaflavins are the major bioactive polyphenols present in black tea. Unfortunately, limited information is available on their biotransformation. In the present study, we investigated the metabolic fate of theaflavin 3,3'-digallate (TFDG), one of the most abundant and bioactive theaflavins, in mouse fecal samples using liquid chromatography/electrospray ionization tandem mass spectrometry by analyzing the MS n (n=1-3) spectra. Four metabolites theaflavin, theaflavin 3-gallate, theaflavin 3'-gallate, and gallic acid were identified as the major mouse fecal metabolites of TFDG. Glucuronidated and sulfated, instead of methylated metabolites of theaflavin 3-gallate, theaflavin 3'-gallate, and TFDG were detected and identified as the minor mouse fecal metabolites of TFDG. Our results indicate that TFDG can be degraded in mice. Further studies on the formation of those metabolites in TFDG-treated mice in germ-free conditions are warranted. To our knowledge, this is the first report on the biotransformation of TFDG in mice. © 2011 Elsevier B.V.


Chen H.,North Carolina A&T State University | Hayek S.,North Carolina A&T State University | Rivera Guzman J.,University of North Carolina at Chapel Hill | Gillitt N.D.,Dole Nutrition Research Laboratory | And 3 more authors.
PLoS ONE | Year: 2012

Background: Theaflavins including theaflavin (TF), theaflavin-3-gallate (TF3G), theaflavin-3′-gallate (TF3′G), and theaflavin-3,3′-digallate (TFDG), are the most important bioactive polyphenols in black tea. Because of their poor systemic bioavailability, it is still unclear how these compounds can exert their biological functions. The objective of this study is to identify the microbial metabolites of theaflavins in mice and in humans. Methods and Findings: In the present study, we gavaged specific pathogen free (SPF) mice and germ free (GF) mice with 200 mg/kg TFDG and identified TF, TF3G, TF3′G, and gallic acid as the major fecal metabolites of TFDG in SPF mice. These metabolites were absent in TFDG- gavaged GF mice. The microbial bioconversion of TFDG, TF3G, and TF3′G was also investigated in vitro using fecal slurries collected from three healthy human subjects. Our results indicate that TFDG is metabolized to TF, TF3G, TF3′G, gallic acid, and pyrogallol by human microbiota. Moreover, both TF3G and TF3′G are metabolized to TF, gallic acid, and pyrogallol by human microbiota. Importantly, we observed interindividual differences on the metabolism rate of gallic acid to pyrogallol among the three human subjects. In addition, we demonstrated that Lactobacillus plantarum 299v and Bacillus subtilis have the capacity to metabolize TFDG. Conclusions: The microbiota is important for the metabolism of theaflavins in both mice and humans. The in vivo functional impact of microbiota-generated theaflavins-derived metabolites is worthwhile of further study. © 2012 Chen et al.


Nieman D.C.,Appalachian State University | Gillitt N.D.,Dole Nutrition Research Laboratory | Knab A.M.,Appalachian State University | Shanely R.A.,Appalachian State University | And 3 more authors.
PLoS ONE | Year: 2013

Objectives:Polyphenol supplementation was tested as a countermeasure to inflammation and oxidative stress induced by 3-d intensified training.Methods:Water soluble polyphenols from blueberry and green tea extracts were captured onto a polyphenol soy protein complex (PSPC). Subjects were recruited, and included 38 long-distance runners ages 19-45 years who regularly competed in road races. Runners successfully completing orientation and baseline testing (N = 35) were randomized to 40 g/d PSPC (N = 17) (2,136 mg/d gallic acid equivalents) or placebo (N = 18) for 17 d using double-blinded methods and a parallel group design, with a 3-d running period inserted at day 14 (2.5 h/d, 70% VO2max). Blood samples were collected pre- and post-14 d supplementation, and immediately and 14 h after the third day of running in subjects completing all aspects of the study (N = 16 PSPC, N = 15 placebo), and analyzed using a metabolomics platform with GC-MS and LC-MS.Results:Metabolites characteristic of gut bacteria metabolism of polyphenols were increased with PSPC and 3 d running (e.g., hippurate, 4-hydroxyhippurate, 4-methylcatechol sulfate, 1.8-, 1.9-, 2.5-fold, respectively, P<0.05), an effect which persisted for 14-h post-exercise. Fatty acid oxidation and ketogenesis were induced by exercise in both groups, with more ketones at 14-h post-exercise in PSPC (3-hydroxybutyrate, 1.8-fold, P<0.05). Established biomarkers for inflammation (CRP, cytokines) and oxidative stress (protein carbonyls) did not differ between groups.Conclusions:PSPC supplementation over a 17-d period did not alter established biomarkers for inflammation and oxidative stress but was linked to an enhanced gut-derived phenolic signature and ketogenesis in runners during recovery from 3-d heavy exertion. Trial Registration: ClinicalTrials.gov, U.S. National Institutes of Health, identifier: NCT01775384. © 2013 Nieman et al.


Nieman D.C.,Appalachian State University | Gillitt N.D.,Dole Nutrition Research Laboratory | Andrew Shanely R.,Appalachian State University | Dew D.,Appalachian State University | And 2 more authors.
Nutrients | Year: 2014

This study determined if 6-weeks vitamin D2 supplementation (vitD2, 3800 IU/day) had an influence on muscle function, eccentric exercise-induced muscle damage (EIMD), and delayed onset of muscle soreness (DOMS) in National Association for Stock Car Auto Racing (NASCAR) NASCAR pit crew athletes. Subjects were randomized to vitD2 (n = 13) and placebo (n = 15), and ingested supplements (double-blind) for six weeks. Blood samples were collected and muscle function tests conducted pre- and post-study (leg-back and hand grip dynamometer strength tests, body weight bench press to exhaustion, vertical jump, 30-s Wingate test). Post-study, subjects engaged in 90 min eccentric-based exercise, with blood samples and DOMS ratings obtained immediately after and 1- and 2-days post-exercise. Six weeks vitD2 increased serum 25(OH)D2 456% and decreased 25(OH)D3 21% versus placebo (p < 0.001, p = 0.036, respectively), with no influence on muscle function test scores. The post-study eccentric exercise bout induced EIMD and DOMS, with higher muscle damage biomarkers measured in vitD2 compared to placebo (myoglobin 252%, 122% increase, respectively, p = 0.001; creatine phosphokinase 24 h post-exercise, 169%, 32%, p < 0.001), with no differences for DOMS. In summary, 6-weeks vitD2 (3800 IU/day) significantly increased 25(OH)D2 and decreased 25(OH)D3, had no effect on muscle function tests, and amplified muscle damage markers in NASCAR pit crew athletes following eccentric exercise. © 2013 by the authors; licensee MDPI, Basel, Switzerland.


Nieman D.C.,Appalachian State University | Gillitt N.D.,Dole Nutrition Research Laboratory | Henson D.A.,Appalachian State University | Sha W.,University of North Carolina at Charlotte | And 4 more authors.
PLoS ONE | Year: 2012

This study compared the acute effect of ingesting bananas (BAN) versus a 6% carbohydrate drink (CHO) on 75-km cycling performance and post-exercise inflammation, oxidative stress, and innate immune function using traditional and metabolomics-based profiling. Trained cyclists (N = 14) completed two 75-km cycling time trials (randomized, crossover) while ingesting BAN or CHO (0.2 g/kg carbohydrate every 15 min). Pre-, post-, and 1-h-post-exercise blood samples were analyzed for glucose, granulocyte (GR) and monocyte (MO) phagocytosis (PHAG) and oxidative burst activity, nine cytokines, F2-isoprostanes, ferric reducing ability of plasma (FRAP), and metabolic profiles using gas chromatography-mass spectrometry. Blood glucose levels and performance did not differ between BAN and CHO (2.41±0.22, 2.36±0.19 h, P = 0.258). F2-isoprostanes, FRAP, IL-10, IL-2, IL-6, IL-8, TNFα, GR-PHAG, and MO-PHAG increased with exercise, with no trial differences except for higher levels during BAN for IL-10, IL-8, and FRAP (interaction effects, P = 0.003, 0.004, and 0.012). Of 103 metabolites detected, 56 had exercise time effects, and only one (dopamine) had a pattern of change that differed between BAN and CHO. Plots from the PLS-DA model visualized a distinct separation in global metabolic scores between time points [R2Y(cum) = 0.869, Q2(cum) = 0.766]. Of the top 15 metabolites, five were related to liver glutathione production, eight to carbohydrate, lipid, and amino acid metabolism, and two were tricarboxylic acid cycle intermediates. BAN and CHO ingestion during 75-km cycling resulted in similar performance, blood glucose, inflammation, oxidative stress, and innate immune levels. Aside from higher dopamine in BAN, shifts in metabolites following BAN and CHO 75-km cycling time trials indicated a similar pattern of heightened production of glutathione and utilization of fuel substrates in several pathways. © 2012 Nieman et al.


Knab A.M.,Appalachian State University | Nieman D.C.,Appalachian State University | Gillitt N.D.,Dole Nutrition Research Laboratory | Shanely R.A.,Appalachian State University | And 3 more authors.
International Journal of Sport Nutrition and Exercise Metabolism | Year: 2013

The effects of a flavonoid-rich fresh fruit and vegetable juice (JUICE) on chronic resting and postexercise inflammation, oxidative stress, immune function, and metabolic profiles (metabolomics analysis, gas-chromatography mass-spectrometry platform) in elite sprint and middle-distance swimmers were studied. In a randomized, crossover design with a 3-wk washout period, swimmers (n = 9) completed 10-d training with or without 16 fl oz of JUICE (230 mg flavonoids) ingested pre- and postworkout. Blood samples were taken presupplementation, post-10-d supplementation, and immediately postexercise, with data analyzed using a 2 × 3 repeated-measures ANOVA. Prestudy blood samples were also acquired from nonathletic controls (n = 7, age- and weight-matched) and revealed higher levels of oxidative stress in the swimmers, no differences in inflammation or immune function, and a distinct separation in global metabolic scores (R2Y [cum] = .971). Swim workouts consisted of high-intensity intervals (1:1, 1:2 swim-to-rest ratio) and induced little inflammation, oxidative stress, or immune changes. A distinct separation in global metabolic scores was found pre- to postexercise (R2Y [cum] = .976), with shifts detected in a small number of metabolites related to substrate utilization. No effect of 10-d JUICE was found on chronic resting levels or postexercise inflammation, oxidative stress, immune function, and shifts in metabolites. In conclusion, sprint and middle-distance swimmers had a slight chronic elevation in oxidative stress compared with nonathletic controls, experienced a low magnitude of postworkout perturbations in the biomarkers included in this study, and received no apparent benefit other than added nutrient intake from ingesting JUICE pre- and postworkout for 10 days. © 2013 Human Kinetics, Inc.


Nieman D.C.,Appalachian State University | Shanely R.A.,Appalachian State University | Gillitt N.D.,Dole Nutrition Research Laboratory | Pappan K.L.,Metabolon | Lila M.A.,North Carolina State University
Journal of Proteome Research | Year: 2013

This study investigated changes in the human serum metabolome elicited by a 3-day period of intensified training. Runners (N = 15, mean ± SD age, 35.2 ± 8.7 years) ran for 2.5 h/day on treadmills at ∼70% VO 2max for 3 days in a row, with blood samples collected pre-exercise, and immediately and 14 h post-exercise. Samples were analyzed using gas and liquid chromatography/mass spectrometry (GC-MS, LC-MS), with compounds identified based on comparison to more than 2800 purified standards. Repeated measures ANOVA was used to identify metabolites that differed significantly across time, with multiple testing corrected by the false discovery rate (FDR) (q-value). Immediately following the 3-day exercise period, significant 2-fold or higher increases in 75 metabolites were measured, with all but 22 of these metabolites related to lipid/carnitine metabolism, 13 to amino acid/peptide metabolism, 4 to hemoglobin/porphyrin metabolism, and 3 to Krebs cycle intermediates (q-values < 0.001). After a 14 h overnight recovery period, 50 of the 75 metabolites remained elevated, with 8 decreased (primarily amino acid-related metabolites) (q-values < 0.05). Among the top 20 metabolites, the mean fold changes were 12.4 ± 5.3 and 2.9 ± 1.3 immediately and 14-h post-exercise, respectively. Significant decreases (40-70%, q < 0.01) in 22 metabolites (primarily related to lysolipid and bile acid metabolism) were measured post-exercise, with all but 4 of these still decreased after 14 h rest recovery (q < 0.025). Runners experienced a profound systemic shift in blood metabolites related to energy production especially from the lipid super pathway following 3 days of heavy exertion that was not fully restored to pre-exercise levels after 14 h recovery. © 2013 American Chemical Society.


Shanely R.A.,Appalachian State University | Nieman D.C.,Appalachian State University | Knab A.M.,Appalachian State University | Gillitt N.D.,Dole Nutrition Research Laboratory | And 4 more authors.
Journal of Sports Sciences | Year: 2014

Incidence of vitamin D deficiency is increasing worldwide. The purpose of this study was to determine if supplementation with vitamin D2 from Portobello mushroom powder would enhance skeletal muscle function and attenuate exercise-induced muscle damage in low vitamin D status high school athletes. Participants were randomised to Portobello mushroom powder (600 IU/d vitamin D2) or placebo for 6 weeks. Participants then completed a 1.5-h exercise session designed to induce skeletal muscle damage. Blood samples and measures of skeletal muscle function were taken pre-supplementation, post-supplementation/pre-exercise and post-exercise. Six weeks supplementation with vitamin D2 increased serum 25(OH)D2 by 9.9-fold and decreased serum 25(OH)D3 by 28%. Changes in skeletal muscle function and circulating markers of skeletal muscle damage did not differ between groups. In conclusion, 600 IU/d vitamin D2 increased 25(OH)D2 with a concomitant decrease in 25(OD)D3, with no effect on muscular function or exercise-induced muscle damage in high school athletes. © 2013 © 2013 Taylor & Francis.


Orena S.,University of North Carolina at Chapel Hill | Owen J.,University of North Carolina at Chapel Hill | Jin F.,Dole Nutrition Research Laboratory | Fabian M.,Dole Nutrition Research Laboratory | And 2 more authors.
Journal of Nutrition | Year: 2015

Background: The biological effects of antioxidant nutrients are mediated in part by activation of antioxidant response elements (AREs) on genes for enzymes involved in endogenous pathways that prevent free radical damage. Traditional approaches for identifying antioxidant molecules in foods, such as total phenolic compound (TP) content or oxygen radical absorption capacity (ORAC), do not measure capacity to activate AREs. Objectives: The goal of this study was to develop an assay to assess the ARE activation capacity of fruit and vegetable extracts and determine whether such capacity was predicted by TP content and/or ORAC activity. Methods: Fruits and vegetables were homogenized, extracted with acidified ethanol, lyophilized, and resuspended in growth medium. Human IMR-32 neuroblastoma cells, transfected with an ARE-firefly luciferase reporter, were exposed to extracts for 5 h. Firefly luciferase was normalized to constitutively expressed Renilla luciferase with tertiary butylhydroquinone (tBHQ) as a positive control. TP content and ORAC activity were measured for each extract. Relations between TPs and ORAC and ARE activity were determined. Results: A total of 107 of 134 extracts tested significantly activated the ARE-luciferase reporter from 1.2- to 58-fold above that of the solvent control (P < 0.05) in human IMR-32 cells. ARE activity, TP content, and ORAC ranked higher in peels than in associated flesh. Despite this relation, ARE activity did not correlate with TP content (Spearman ρ = 0.05, P = 0.57) and only modestly but negatively correlated with ORAC (Spearman ρ = -0.24, P < 0.01). Many extracts activated the ARE more than predicted by the TP content or ORAC. Conclusions: The ARE reporter assay identified many active fruit and vegetable extracts in human IMR-32 cells. There are components of fruits and vegetables that activate the ARE but are not phenolic compounds and are low in ORAC. The ARE-luciferase reporter assay is likely a better predictor of the antioxidant benefits of fruits and vegetables than TP or ORAC.

Loading Dole Nutrition Research Laboratory collaborators
Loading Dole Nutrition Research Laboratory collaborators