Entity

Time filter

Source Type

Daejeon, South Korea

Provided are a novel amino-silyl amine compound, a method for preparing the same, and a silicon-containing thin-film using the same, wherein the amino-silyl amine compound has thermal stability and high volatility and is maintained in a liquid state at room temperature and under a pressure where handling is easy to thereby form a silicon-containing thin-film having high purity and excellent physical and electrical properties by various deposition methods.


Provided are a novel amino-silyl amine compound, a method for preparing the same, and a silicon-containing thin-film using the same, wherein the amino-silyl amine compound has thermal stability and high volatility and is maintained in a liquid state at room temperature and under a pressure where handling is easy to thereby form a silicon-containing thin-film having high purity and excellent physical and electrical properties by various deposition methods.


Je S.Y.,Inha University | Son B.-G.,Inha University | Kim H.-G.,DNF Co. | Park M.-Y.,DNF Co. | And 3 more authors.
ACS Applied Materials and Interfaces | Year: 2014

Although solution-processable high-k inorganic dielectrics have been implemented as a gate insulator for high-performance, low-cost transition metal oxide field-effect transistors (FETs), the high-temperature annealing (>300 °C) required to achieve acceptable insulating properties still limits the facile realization of flexible electronics. This study reports that the addition of a 2-dimetylamino-1-propanol (DMAPO) catalyst to a perhydropolysilazane (PHPS) solution enables a significant reduction of the curing temperature for the resulting SiO2 dielectrics to as low as 180 °C. The hydrolysis and condensation of the as-spun PHPS film under humidity conditions were enhanced greatly by the presence of DMAPO, even at extremely low curing temperatures, which allowed a smooth surface (roughness of 0.31 nm) and acceptable leakage characteristics (1.8 × 10-6 A/cm2 at an electric field of 1MV/cm) of the resulting SiO2 dielectric films. Although the resulting indium zinc oxide (IZO) FETs exhibited an apparent high mobility of 261.6 cm2/(V s), they suffered from a low on/off current (ION/OFF) ratio and large hysteresis due to the hygroscopic property of silazane-derived SiO2 film. The ION/OFF value and hysteresis instability of IZO FETs was improved by capping the high-k LaZrOx dielectric on a solution-processed SiO2 film via sol-gel processing at a low temperature of 180 °C while maintaining a high mobility of 24.8 cm2/(V s). This superior performance of the IZO FETs with a spin-coated LaZrOx/SiO2 bilayer gate insulator can be attributed to the efficient intercalation of the 5s orbital of In3+ ion in the IZO channel, the good interface matching of IZO/LaZrOx and the carrier blocking ability of PHPS-derived SiO2 dielectric film. Therefore, the solution-processable LaZrOx/SiO2 stack can be a promising candidate as a gate dielectric for low-temperature, high-performance, and low-cost flexible metal oxide FETs. © 2014 American Chemical Society.


Jeong Y.,Durham University | Pearson C.,Durham University | Kim H.-G.,DNF Co. | Park M.-Y.,DNF Co. | And 3 more authors.
ACS Applied Materials and Interfaces | Year: 2016

We report on the optimization of the plasma treatment conditions for a solution-processed silicon dioxide gate insulator for application in zinc oxide thin film transistors (TFTs). The SiO2 layer was formed by spin coating a perhydropolysilazane (PHPS) precursor. This thin film was subsequently thermally annealed, followed by exposure to an oxygen plasma, to form an insulating (leakage current density of ∼10-7 A/cm2) SiO2 layer. Optimized ZnO TFTs (40 W plasma treatment of the gate insulator for 10 s) possessed a carrier mobility of 3.2 cm2/(V s), an on/off ratio of ∼107, a threshold voltage of -1.3 V, and a subthreshold swing of 0.2 V/decade. In addition, long-term exposure (150 min) of the pre-annealed PHPS to the oxygen plasma enabled the maximum processing temperature to be reduced from 180 to 150°C. The resulting ZnO TFT exhibited a carrier mobility of 1.3 cm2/(V s) and on/off ratio of ∼107. © 2015 American Chemical Society.


Jeong Y.,Durham University | Pearson C.,Durham University | Kim H.-G.,DNF Co. | Park M.-Y.,DNF Co. | And 3 more authors.
RSC Advances | Year: 2015

We report on the lowerature formation (180 °C) of a SiO2 dielectric layer from solution-processed perhydropolysilazane. A bottom-gate zinc oxide thin-film transistor has subsequently been fabricated that possesses a carrier mobility of 3 cm2 V s-1, an on/off ratio of 107 and minimal hysteresis in its transfer and output characteristics. © 2015 The Royal Society of Chemistry.

Discover hidden collaborations