Time filter

Source Type

Federal Way, CA, United States

Cohen F.,Genentech | Koehler M.F.T.,Genentech | Bergeron P.,Genentech | Elliott L.O.,DNA Way | And 8 more authors.
Bioorganic and Medicinal Chemistry Letters

A series of IAP antagonists based on thiazole or benzothiazole amide isosteres was designed and synthesized. These compounds were tested for binding to the XIAP-BIR3 and ML-IAP BIR using a fluorescence polarization assay. The most potent of these compounds, 19a and 33b, were found to have K i's of 20-30 nM against ML-IAP and 50-60 nM against XIAP-BIR3. © 2010 Elsevier Ltd. All rights reserved. Source

Pham V.C.,DNA Way | Pitti R.,DNA Way | Anania V.G.,DNA Way | Bakalarski C.E.,DNA Way | And 8 more authors.
Journal of Proteome Research

Proteolysis is a key regulatory event that controls intracellular and extracellular signaling through irreversible changes in a proteins structure that greatly alters its function. Here we describe a platform for profiling caspase substrates which encompasses two highly complementary proteomic techniques - the first is a differential gel based approach termed Global Analyzer of SILAC-derived Substrates of Proteolysis (GASSP) and the second involves affinity enrichment of peptides containing a C-terminal aspartic acid residue. In combination, these techniques have enabled the profiling of a large cellular pool of apoptotic-mediated proteolytic events across a wide dynamic range. By applying this integrated proteomic work flow to analyze proteolytic events resulting from the induction of intrinsic apoptosis in Jurkat cells via etoposide treatment, 3346 proteins were quantified, of which 360 proteins were identified as etoposide-induced proteolytic substrates, including 160 previously assigned caspase substrates. In addition to global profiling, a targeted approach using BAX HCT116 isogenic cell lines was utilized to dissect pre- and post-mitochondrial extrinsic apoptotic cleavage events. By employing apoptotic activation with a pro-apoptotic receptor agonist (PARA), a limited set of apoptotic substrates including known caspase substrates such as BH3 interacting-domain death agonist (BID) and Poly (ADP-ribose) polymerase (PARP)-1, and novel substrates such as Basic Transcription Factor 3, TRK-fused gene protein (TFG), and p62/Sequestosome were also identified. © 2012 American Chemical Society. Source

Koehler M.F.T.,DNA Way | Bergeron P.,DNA Way | Choo E.F.,Drug Metabolism and Pharmacokinetics | Lau K.,DNA Way | And 36 more authors.
ACS Medicinal Chemistry Letters

Because of the promise of BCL-2 antagonists in combating chronic lymphocytic leukemia (CLL) and non-Hodgkin's lymphoma (NHL), interest in additional selective antagonists of antiapoptotic proteins has grown. Beginning with a series of selective, potent BCL-XL antagonists containing an undesirable hydrazone functionality, in silico design and X-ray crystallography were utilized to develop alternative scaffolds that retained the selectivity and potency of the starting compounds. © 2014 American Chemical Society. Source

Rudolph J.,DNA Way | Murray L.J.,DNA Way | Ndubaku C.O.,DNA Way | Ndubaku C.O.,Aduro Biotech | And 27 more authors.
Journal of Medicinal Chemistry

p21-activated kinase 1 (PAK1) has an important role in transducing signals in several oncogenic pathways. The concept of inhibiting this kinase has garnered significant interest over the past decade, particularly for targeting cancers associated with PAK1 amplification. Animal studies with the selective group I PAK (pan-PAK1, 2, 3) inhibitor G-5555 from the pyrido[2,3-d]pyrimidin-7-one class uncovered acute toxicity with a narrow therapeutic window. To attempt mitigating the toxicity, we introduced significant structural changes, culminating in the discovery of the potent pyridone side chain analogue G-9791. Mouse tolerability studies with this compound, other members of this series, and compounds from two structurally distinct classes revealed persistent toxicity and a correlation of minimum toxic concentrations and PAK1/2 mediated cellular potencies. Broad screening of selected PAK inhibitors revealed PAK1, 2, and 3 as the only overlapping targets. Our data suggest acute cardiovascular toxicity resulting from the inhibition of PAK2, which may be enhanced by PAK1 inhibition, and cautions against continued pursuit of pan-group I PAK inhibitors in drug discovery. © 2016 American Chemical Society. Source

Rousseau F.,DNA Way | Rousseau F.,French Institute of Health and Medical Research | Rousseau F.,NovImmune | Pan B.,Genentech | And 5 more authors.
Journal of Molecular Biology

Jumping Translocation Breakpoint (JTB) is an orphan receptor that is conserved from nematodes to humans and whose gene expression in humans is strikingly upregulated in diverse types of cancers. Translocations occur frequently at the hJTB genomic locus, leading to multiple copies of a truncated JTB gene, which potentially encodes a soluble secreted ectodomain. In addition, JTB and its orthologs likely represent a unique and ancient protein family since homologs could not be identified by direct sequence comparison. In the present study, we have determined the NMR solution structure of the N-terminal ectodomain of human JTB, showing that its fold architecture is a new variant of a three-β-strand antiparallel β-meander. The JTB structure has a distant relationship to the midkine/pleiotrophin fold, particularly in the conservation of distinctive disulfide bridge patterns. The structure of this newly characterized small cysteine-rich domain suggests potential involvement of JTB in interactions with proteins or extracellular matrix and may help to uncover the elusive biological functions of this protein. © 2011 Elsevier Ltd. All rights reserved. Source

Discover hidden collaborations