Entity

Time filter

Source Type

Seattle, WA, United States

Zhao H.,DNA Response
Cell cycle (Georgetown, Tex.) | Year: 2014

Timely and proper cellular response to DNA damage is essential for maintenance of genome stability and integrity. B-cell lymphoma/leukemia 10 (BCL10) facilitates ubiquitination of NEMO in the cytosol, activating NFκB signaling. Translocation and/or point mutations of BCL10 associate with mucosa-associated lymphoid tissue lymphomas and other malignancies. However, the mechanisms by which the resulting aberrant expression of BCL10 leads to cellular oncogenesis are poorly understood. In this report, we found that BCL10 in the nucleus is enriched at the DNA damage sites in an ATM- and RNF8-dependent manner. ATM-dependent phosphorylation of BCL10 promotes its interaction with and presentation of UBC13 to RNF8, and RNF8-mediated ubiquitination of BCL10 enhances binding of BCL10 and UBC13 to RNF168. This allows mono-ubiquitination on H2AX by RNF168 and further poly-ubiquitination by the RNF8/RNF168-containing complex. Depletion of BCL10 compromised homology recombination-mediated DNA double-strand break (DSB) repair because of insufficient recruitment of BRCA1, RAD51, and the ubiquitinated DNA damage response factors. Taken together, our results demonstrate a novel function of BCL10 in delivering UBC13 to RNF8/RNF168 to regulate ubiquitination-mediated DSB signaling and repair.


Staples C.J.,University of Sheffield | Myers K.N.,University of Sheffield | Beveridge R.D.D.,University of Sheffield | Patil A.A.,University of Sheffield | And 5 more authors.
Journal of Cell Science | Year: 2012

The centrosome acts as a centre for microtubule organisation and plays crucial roles in cell polarity, migration, growth and division. Cep131 has recently been described as a basal body component essential for cilium formation, but its function in non-ciliogenic cells is unknown. We identified human Cep131 (also known as AZI1) in a screen for regulators of genome stability. We show that centrosomal localisation of Cep131 is cell-cycle-regulated and requires both an intact microtubule network and a functional dynein-dynactin transport system. Cep131 is recruited to centriolar satellites by PCM1, and localised to the centriolar core region by both pericentrin and Cep290. Depletion of Cep131 results in a reduction in proliferation rate, centriole amplification, an increased frequency of multipolar mitosis, chromosomal instability and an increase in post-mitotic DNA damage. These data therefore highlight the importance of human Cep131 for maintaining genomic integrity. © 2012.


Online commercial activities are susceptible to high levels of fraud. Online sources of goods, including business-to-business resources, marketplace web sites, custom retail web sites, and the like may knowingly or unknowingly pass off counterfeit goods as genuine, sell overstock goods at low prices without production and commission costs, and solicit customers anonymously. In some embodiments of the present disclosure, electronic commerce sites are monitored using data metrics to track electronic retailer activities, monitor distribution volumes by source, and monitor pricing. Analysis of such items may be used to detect potentially fraudulent activity, and, based on manufacturer policy and threshold settings, may automatically report, notify, or take action against such illicit product sources.


Horejsi Z.,DNA Response | Stach L.,UK National Institute for Medical Research | Flower T.G.,UK National Institute for Medical Research | Joshi D.,London Research Institute | And 7 more authors.
Cell Reports | Year: 2014

The R2TP cochaperone complex plays a critical role in the assembly of multisubunit machines, including small nucleolar ribonucleoproteins (snoRNPs), RNA polymerase II, and the mTORC1 and SMG1 kinase complexes, but the molecular basis of substrate recognition remains unclear. Here, we describe a phosphopeptide binding domain (PIH-N) in the PIH1D1 subunit of the R2TP complex that preferentially binds to highly acidic phosphorylated proteins. A cocrystal structure of a PIH-N domain/TEL2 phosphopeptide complex reveals a highly specific phosphopeptide recognition mechanism in which Lys57 and 64 in PIH1D1, along with a conserved DpSDD phosphopeptide motif within TEL2, are essential and sufficient for binding. Proteomic analysis of PIH1D1 interactors identified R2TP complex substrates that are recruited by the PIH-N domain in a sequence-specific and phosphorylation-dependent manner suggestive of a common mechanism of substrate recognition. We propose that protein complexes assembled by the R2TP complex are defined by phosphorylation of a specific motif and recognition by the PIH1D1 subunit. © 2014 The Authors.


Ward J.D.,DNA Response | Muzzini D.M.,University of Milan | Petalcorin M.I.R.,DNA Response | Martinez-Perez E.,Imperial College London | And 5 more authors.
Molecular Cell | Year: 2010

Homologous recombination (HR) is essential for repair of meiotic DNA double-strand breaks (DSBs). Although the mechanisms of RAD-51-DNA filament assembly and strand exchange are well characterized, the subsequent steps of HR are less well defined. Here, we describe a synthetic lethal interaction between the C. elegans helicase helq-1 and RAD-51 paralog rfs-1, which results in a block to meiotic DSB repair after strand invasion. Whereas RAD-51-ssDNA filaments assemble at meiotic DSBs with normal kinetics in helq-1, rfs-1 double mutants, persistence of RAD-51 foci and genetic interactions with rtel-1 suggest a failure to disassemble RAD-51 from strand invasion intermediates. Indeed, purified HELQ-1 and RFS-1 independently bind to and promote the disassembly of RAD-51 from double-stranded, but not single-stranded, DNA filaments via distinct mechanisms in vitro. These results indicate that two compensating activities are required to promote postsynaptic RAD-51 filament disassembly, which are collectively essential for completion of meiotic DSB repair. © 2010 Elsevier Inc. All rights reserved.

Discover hidden collaborations