Time filter

Source Type

Georgetown, TX, United States

Hughey J.R.,University of Texas at Austin | Di Nunzio J.C.,University of Texas at Austin | Di Nunzio J.C.,PharmaForm LLC | Bennett R.C.,University of Texas at Austin | And 5 more authors.
AAPS PharmSciTech | Year: 2010

In this study, hot melt extrusion (HME) and KinetiSol® Dispersing (KSD) were utilized to prepare dissolution-enhanced solid dispersions of Roche Research Compound A (ROA), a BCS class II drug. Preformulation characterization studies showed that ROA was chemically unstable at elevated temperatures and acidic pH values. Eudragit® L100-55 and AQOAT® LF (HPMCAS) were evaluated as carrier polymers. Dispersions were characterized for ROA recovery, crystallinity, homogeneity, and non-sink dissolution. Eudragit® L100-55 dispersions prepared by HME required the use of micronized ROA and reduced residence times in order to become substantially amorphous. Compositions containing HPMCAS were also prepared by HME, but an amorphous dispersion could not be obtained. All HME compositions contained ROA-related impurities. KSD was investigated as a method to reduce the decomposition of ROA while rendering compositions amorphous. Substantially amorphous, plasticizer free compositions were processed successfully by KSD with significantly higher ROA recovery values and amorphous character than those achieved by HME. A near-infrared chemical imaging analysis was conducted on the solid dispersions as a measure of homogeneity. A statistical analysis showed similar levels of homogeneity in compositions containing Eudragit® L100-55, while differences were observed in those containing HMPCAS. Non-sink dissolution analysis of all compositions showed rapid supersaturation after pH adjustment to approximately two to three times the equilibrium solubility of ROA, which was maintained for at least 24 h. The results of the study demonstrated that KSD is an effective method of forming dissolutionenhanced amorphous solid solutions in cases where HME is not a feasible technique. © 2010 American Association of Pharmaceutical Scientists.

DiNunzio J.C.,University of Texas at Austin | Brough C.,Dispersol Technologies | Miller D.A.,University of Texas at Austin | Williams R.O.,University of Texas at Austin | McGinity J.W.,University of Texas at Austin
European Journal of Pharmaceutical Sciences | Year: 2010

Thermal manufacturing methods for the production of solid dispersions frequently require the addition of a plasticizer in order to achieve requisite molten material flow properties when processed by unit operations such as hot melt extrusion. KinetiSol® Dispersing, a rapid high energy thermal manufacturing process, was investigated for the ability to produce amorphous solid dispersions without the aid of a plasticizer. For this study itraconazole was used as a model active ingredient, while Eudragit® L100-55 and Carbomer 974P were used as model solid dispersion carriers. Triethyl citrate (TEC) was used as necessary as a model plasticizer. Compositions prepared by KinetiSol® Dispersing and hot melt extrusion were evaluated for solid state properties, supersaturated in vitro dissolution behavior under pH change conditions and accelerated stability performance. Results showed that both manufacturing processes were capable of producing amorphous solid dispersions, however compositions produced by hot melt extrusion required the presence of TEC and yielded a glass transition temperature (Tg) of approximately 54°C. Plasticized and unplasticized compositions were successfully produced by KinetiSol® Dispersing, with plasticizer free solid dispersions exhibiting a Tg of approximately 101°C. Supersaturated in vitro dissolution testing revealed a significantly higher dissolution rate of plasticized material which was attributed to the pore forming behavior of TEC during the acidic phase of testing. A further contribution to release may also have been provided by the greater diffusivity in the plasticized polymer. X-ray diffraction testing revealed that under accelerated stability conditions, plasticized compositions exhibited partial recrystallization, while plasticizer free materials remained amorphous throughout the 6-month testing period. These results demonstrated that KinetiSol® Dispersing could be used for the production of amorphous solid dispersions without the aid of a plasticizer and illustrated the enhanced solid state stability that can be achieved by producing solid dispersions with higher glass transition temperatures. © 2010 Elsevier B.V.

Hughey J.R.,University of Texas at Austin | Keen J.M.,University of Texas at Austin | Keen J.M.,Dispersol Technologies | Bennett R.C.,University of Texas at Austin | And 2 more authors.
Drug Development and Industrial Pharmacy | Year: 2015

While the use of amorphous solid dispersions to improve aqueous solubility is well documented, little consideration has traditionally been given to the finished dosage form. The objective of this study was to evaluate the dissolution performance of amorphous solid dispersions containing a dispersed superdisintegrant with binding properties. KinetiSol® dispersing was used to thermally process hypromellose acetate succinate-based compositions containing the drug substance nifedipine (NIF) and a highly compressible grade of low-substituted hydroxypropyl cellulose (New Binder Disintegrants; NBD-grade). Solid-state analysis demonstrated that compositions were rendered amorphous during processing. Tablets containing intra-dispersion NBD were found to exhibit non-sink dissolution performance similar to milled intermediate, demonstrating excellent disintegration characteristics. Conversely, tablets without intra-dispersion NBD were found to release significantly less NIF during dissolution analysis due to particle agglomeration. It was determined that compressibility and particle wetting increased as the level of intra-dispersion NBD increased. © 2014 Informa Healthcare USA, Inc. All rights reserved.

Keen J.M.,University of Texas at Austin | Keen J.M.,Dispersol Technologies | Hughey J.R.,University of Texas at Austin | Bennett R.C.,University of Texas at Austin | And 4 more authors.
Molecular Pharmaceutics | Year: 2015

The objective of this study was to evaluate the use of glyceryl behenate as a plasticizer and release modifier in solid dispersion systems containing itraconazole and carbamazepine. Amorphous solid dispersions of high molecular weight polyvinylpyrrolidone were prepared by hot-melt extrusion, the processing of which was improved by the inclusion of glyceryl behenate. Dispersions were milled and subsequently compressed into tablets. Solid dispersions were also prepared by KinetiSol Dispersing, which allowed for the manufacture of monolithic tablets of the same composition and shape as compressed tablets. Tablets without glyceryl behenate and all compressed tablets were observed to have an incomplete release profile likely due to drug crystallization within the tablet as this occurred at conditions in which dissolution concentrations were below saturation. Monolithic tablets formulated to be more hydrophobic, by including glyceryl behenate, allowed for sustained release below and above saturation conditions. © 2014 American Chemical Society.

Dinunzio J.C.,University of Texas at Austin | Hughey J.R.,University of Texas at Austin | Brough C.,Dispersol Technologies | Miller D.A.,University of Texas at Austin | And 2 more authors.
Drug Development and Industrial Pharmacy | Year: 2010

Objectives: To investigate the ability of KinetiSol® Dispersing to prepare amorphous solid dispersions of itraconazole using concentration- enhancing polymers. Methods: Concentration-enhancing nature of several cellulosic polymers (HPMC, hypromellose acetate succinate) was studied using a modified in vitro dissolution test. Solid dispersions were prepared by KinetiSol® Dispersing and characterized for solid-state properties using X-ray diffraction and differential scanning calorimetry. Potency and release characteristics were also assessed by high-performance liquid chromatography. Oral bioavailability of lead formulations was also assessed in animal models. Results: Screening studies demonstrated superior concentration-enhancing performance from the hypromellose acetate succinate polymer class. Data showed that stabilization was related to molecular weight and the degree of hydrophobic substitution on the polymer such that HF > MF ≈ LF, indicating that stabilization was achieved through a combination of steric hindrance and hydrophobic interaction, supplemented by the amphiphilic nature and ionization state of the polymer. Solid dispersions exhibited amorphous solid-state behavior and provided neutral media supersaturation using a surfactant-free pH change method. Rank-order behavior was such that LF > MF > HF. Addition of Carbopol 974P increased acidic media dissolution, while providing a lower magnitude of supersaturation in neutral media because of swelling of the high viscosity gel. In vivo results for both lead compositions displayed erratic absorption was attributed to the variability of gastrointestinal pH in the animals. Conclusions: These results showed that production of amorphous solid dispersions containing concentration-enhancing polymers through KinetiSol® Dispersing can provide improved oral bioavailability; however, additional formulation techniques must be developed to minimize variability associated with natural variations in subject gastrointestinal physiology. © 2010 Informa UK, Ltd.

Discover hidden collaborations