Edinburgh, United Kingdom
Edinburgh, United Kingdom

Time filter

Source Type

Fox N.J.,Disease Systems Team | Fox N.J.,University of York | Marion G.,Biomathematics and Statistics Scotland | Davidson R.S.,Disease Systems Team | And 2 more authors.
PLoS ONE | Year: 2013

Parasitic helminths present one of the most pervasive challenges to grazing herbivores. Many macro-parasite transmission models focus on host physiological defence strategies, omitting more complex interactions between hosts and their environments. This work represents the first model that integrates both the behavioural and physiological elements of gastro-intestinal nematode transmission dynamics in a managed grazing system. A spatially explicit, individual-based, stochastic model is developed, that incorporates both the hosts' immunological responses to parasitism, and key grazing behaviours including faecal avoidance. The results demonstrate that grazing behaviour affects both the timing and intensity of parasite outbreaks, through generating spatial heterogeneity in parasite risk and nutritional resources, and changing the timing of exposure to the parasites' free-living stages. The influence of grazing behaviour varies with the host-parasite combination, dependent on the development times of different parasite species and variations in host immune response. Our outputs include the counterintuitive finding that under certain conditions perceived parasite avoidance behaviours (faecal avoidance) can increase parasite risk, for certain host-parasite combinations. Through incorporating the two-way interaction between infection dynamics and grazing behaviour, the potential benefits of parasite-induced anorexia are also demonstrated. Hosts with phenotypic plasticity in grazing behaviour, that make grazing decisions dependent on current parasite burden, can reduce infection with minimal loss of intake over the grazing season. This paper explores how both host behaviours and immunity influence macro-parasite transmission in a spatially and temporally heterogeneous environment. The magnitude and timing of parasite outbreaks is influenced by host immunity and behaviour, and the interactions between them; the incorporation of both regulatory processes is required to fully understand transmission dynamics. Understanding of both physiological and behavioural defence strategies will aid the development of novel approaches for control. © 2013 Fox et al.


Fox N.J.,Disease Systems Team | Fox N.J.,University of York | Marion G.,Biomathematics and Statistics Scotland | Davidson R.S.,Disease Systems Team | And 2 more authors.
Royal Society Open Science | Year: 2015

Parasitic nematodes represent one of the most pervasive and significant challenges to grazing livestock, and their intensity and distribution are strongly influenced by climate. Parasite levels and species composition have already shifted under climate change, with nematode parasite intensity frequently low in newly colonized areas, but sudden largescale outbreaks are becoming increasingly common. These outbreaks compromise both food security and animal welfare, yet there is a paucity of predictions on how climate change will influence livestock parasites. This study aims to assess how climate change can affect parasite risk. Using a processbased approach, we determine how changes in temperaturesensitive elements of outbreaks influence parasite dynamics, to explore the potential for climate change to influence livestock helminth infections. We show that changes in temperatesensitive parameters can result in nonlinear responses in outbreak dynamics, leading to distinct ‘tipping-points’ in nematode parasite burdens. Through applying two mechanistic models, of varying complexity, our approach demonstrates that these nonlinear responses are robust to the inclusion of a number of realistic processes that are present in livestock systems. Our study demonstrates that small changes in climatic conditions around critical thresholds may result in dramatic changes in parasite burdens. ©2015 The Authors.


Prentice J.C.,Disease Systems Team | Prentice J.C.,University of York | Marion G.,Biomathematics and Statistics Scotland | White P.C.L.,University of York | And 2 more authors.
PLoS ONE | Year: 2014

Population reduction is often used as a control strategy when managing infectious diseases in wildlife populations in order to reduce host density below a critical threshold. However, population reduction can disrupt existing social and demographic structures leading to changes in observed host behaviour that may result in enhanced disease transmission. Such effects have been observed in several disease systems, notably badgers and bovine tuberculosis. Here we characterise the fundamental properties of disease systems for which such effects undermine the disease control benefits of population reduction. By quantifying the size of response to population reduction in terms of enhanced transmission within a generic non-spatial model, the properties of disease systems in which such effects reduce or even reverse the disease control benefits of population reduction are identified. If population reduction is not sufficiently severe, then enhanced transmission can lead to the counter intuitive perturbation effect, whereby disease levels increase or persist where they would otherwise die out. Perturbation effects are largest for systems with low levels of disease, e.g. low levels of endemicity or emerging disease. Analysis of a stochastic spatial meta-population model of demography and disease dynamics leads to qualitatively similar conclusions. Moreover, enhanced transmission itself is found to arise as an emergent property of density dependent dispersal in such systems. This spatial analysis also shows that, below some threshold, population reduction can rapidly increase the area affected by disease, potentially expanding risks to sympatric species. Our results suggest that the impact of population reduction on social and demographic structures is likely to undermine disease control in many systems, and in severe cases leads to the perturbation effect. Social and demographic mechanisms that enhance transmission following population reduction should therefore be routinely considered when designing control programmes. © 2014 Prentice et al.


PubMed | Biomathematics and Statistics Scotland, University of West of Scotland, University of York and Disease Systems Team
Type: Journal Article | Journal: Royal Society open science | Year: 2015

Parasitic nematodes represent one of the most pervasive and significant challenges to grazing livestock, and their intensity and distribution are strongly influenced by climate. Parasite levels and species composition have already shifted under climate change, with nematode parasite intensity frequently low in newly colonized areas, but sudden large-scale outbreaks are becoming increasingly common. These outbreaks compromise both food security and animal welfare, yet there is a paucity of predictions on how climate change will influence livestock parasites. This study aims to assess how climate change can affect parasite risk. Using a process-based approach, we determine how changes in temperature-sensitive elements of outbreaks influence parasite dynamics, to explore the potential for climate change to influence livestock helminth infections. We show that changes in temperate-sensitive parameters can result in nonlinear responses in outbreak dynamics, leading to distinct tipping-points in nematode parasite burdens. Through applying two mechanistic models, of varying complexity, our approach demonstrates that these nonlinear responses are robust to the inclusion of a number of realistic processes that are present in livestock systems. Our study demonstrates that small changes in climatic conditions around critical thresholds may result in dramatic changes in parasite burdens.

Loading Disease Systems Team collaborators
Loading Disease Systems Team collaborators