Directors Research

Heidelberg, Germany

Directors Research

Heidelberg, Germany

Time filter

Source Type

Lima-Mendez G.,Catholic University of Leuven | Lima-Mendez G.,Center for the Biology of Disease | Lima-Mendez G.,Vrije Universiteit Brussel | Faust K.,Catholic University of Leuven | And 105 more authors.
Science | Year: 2015

Species interaction networks are shaped by abiotic and biotic factors. Here, as part of the Tara Oceans project, we studied the photic zone interactome using environmental factors and organismal abundance profiles and found that environmental factors are incomplete predictors of community structure. We found associations across plankton functional types and phylogenetic groups to be nonrandomly distributed on the network and driven by both local and global patterns. We identified interactions among grazers, primary producers, viruses, and (mainly parasitic) symbionts and validated networkgenerated hypotheses using microscopy to confirm symbiotic relationships. We have thus provided a resource to support further research on ocean food webs and integrating biological components into ocean models. © 2015, American Association for the Advancement of Science. All rights reserved.


PubMed | University of Bremen, Paris-Sorbonne University, French National Center for Scientific Research, Ecole Normale Superieure de Paris and 6 more.
Type: | Journal: Scientific data | Year: 2015

The Tara Oceans expedition (2009-2013) sampled contrasting ecosystems of the world oceans, collecting environmental data and plankton, from viruses to metazoans, for later analysis using modern sequencing and state-of-the-art imaging technologies. It surveyed 210 ecosystems in 20 biogeographic provinces, collecting over 35,000 samples of seawater and plankton. The interpretation of such an extensive collection of samples in their ecological context requires means to explore, assess and access raw and validated data sets. To address this challenge, the Tara Oceans Consortium offers open science resources, including the use of open access archives for nucleotides (ENA) and for environmental, biogeochemical, taxonomic and morphological data (PANGAEA), and the development of on line discovery tools and collaborative annotation tools for sequences and images. Here, we present an overview of Tara Oceans Data, and we provide detailed registries (data sets) of all campaigns (from port-to-port), stations and sampling events.


Zitouni S.,Instituto Gulbenkian Of Ciencia | Francia M.,Instituto Gulbenkian Of Ciencia | Leal F.,Instituto Gulbenkian Of Ciencia | Montenegro Gouveia S.,Instituto Gulbenkian Of Ciencia | And 16 more authors.
Current Biology | Year: 2016

Centrioles are essential for the assembly of both centrosomes and cilia. Centriole biogenesis occurs once and only once per cell cycle and is temporally coordinated with cell-cycle progression, ensuring the formation of the right number of centrioles at the right time. The formation of new daughter centrioles is guided by a pre-existing, mother centriole. The proximity between mother and daughter centrioles was proposed to restrict new centriole formation until they separate beyond a critical distance. Paradoxically, mother and daughter centrioles overcome this distance in early mitosis, at a time when triggers for centriole biogenesis Polo-like kinase 4 (PLK4) and its substrate STIL are abundant. Here we show that in mitosis, the mitotic kinase CDK1-CyclinB binds STIL and prevents formation of the PLK4-STIL complex and STIL phosphorylation by PLK4, thus inhibiting untimely onset of centriole biogenesis. After CDK1-CyclinB inactivation upon mitotic exit, PLK4 can bind and phosphorylate STIL in G1, allowing pro-centriole assembly in the subsequent S phase. Our work shows that complementary mechanisms, such as mother-daughter centriole proximity and CDK1-CyclinB interaction with centriolar components, ensure that centriole biogenesis occurs once and only once per cell cycle, raising parallels to the cell-cycle regulation of DNA replication and centromere formation. Zitouni, Francia et al. explore the mechanisms coupling the cell cycle to centrosome biogenesis, and show that in mitosis, CDK1 competes with PLK4, the trigger of centriole biogenesis, for binding to its substrate STIL. PLK4 binding and phosphorylation of STIL occurs only upon CDK1 activity drop at mitotic exit, leading to centriole biogenesis onset. © 2016 Elsevier Ltd.


Triebel J.,Paracelsus Medical University | Bertsch T.,Paracelsus Medical University | Bollheimer C.,Friedrich - Alexander - University, Erlangen - Nuremberg | Rios-Barrera D.,Directors Research | And 4 more authors.
American Journal of Physiology - Regulatory Integrative and Comparative Physiology | Year: 2015

The hormonal family of vasoinhibins, which derive from the anterior pituitary hormone prolactin, are known for their inhibiting effects on blood vessel growth, vasopermeability, and vasodilation. As pleiotropic hormones, vasoinhibins act in multiple target organs and tissues. The generation, secretion, and regulation of vasoinhibins are embedded into the organizational principle of an axis, which integrates the hypothalamus, the pituitary, and the target tissue microenvironment. This axis is designated as the prolactin/vasoinhibin axis. Disturbances of the prolactin/vasoinhibin axis are associated with the pathogenesis of retinal and cardiac diseases and with diseases occurring during pregnancy. New phylogenetical, physiological, and clinical implications are discussed. © 2015 the American Physiological Society.


PubMed | National Institute of Genetics, French Institute of Health and Medical Research, Johns Hopkins University, French National Center for Scientific Research and 2 more.
Type: Journal Article | Journal: Current biology : CB | Year: 2016

Centrioles are essential for the assembly of both centrosomes and cilia. Centriole biogenesis occurs once and only once per cell cycle and is temporally coordinated with cell-cycle progression, ensuring the formation of the right number of centrioles at the right time. The formation of new daughter centrioles is guided by a pre-existing, mother centriole. The proximity between mother and daughter centrioles was proposed to restrict new centriole formation until they separate beyond a critical distance. Paradoxically, mother and daughter centrioles overcome this distance in early mitosis, at a time when triggers for centriole biogenesis Polo-like kinase 4 (PLK4) and its substrate STIL are abundant. Here we show that in mitosis, the mitotic kinase CDK1-CyclinB binds STIL and prevents formation of the PLK4-STIL complex and STIL phosphorylation by PLK4, thus inhibiting untimely onset of centriole biogenesis. After CDK1-CyclinB inactivation upon mitotic exit, PLK4 can bind and phosphorylate STIL in G1, allowing pro-centriole assembly in the subsequent S phase. Our work shows that complementary mechanisms, such as mother-daughter centriole proximity and CDK1-CyclinB interaction with centriolar components, ensure that centriole biogenesis occurs once and only once per cell cycle, raising parallels to the cell-cycle regulation of DNA replication and centromere formation.


PubMed | Centura Health, Paracelsus Medical University, National Autonomous University of Mexico, Endokrinologikum Gottingen and 2 more.
Type: Journal Article | Journal: American journal of physiology. Regulatory, integrative and comparative physiology | Year: 2015

The hormonal family of vasoinhibins, which derive from the anterior pituitary hormone prolactin, are known for their inhibiting effects on blood vessel growth, vasopermeability, and vasodilation. As pleiotropic hormones, vasoinhibins act in multiple target organs and tissues. The generation, secretion, and regulation of vasoinhibins are embedded into the organizational principle of an axis, which integrates the hypothalamus, the pituitary, and the target tissue microenvironment. This axis is designated as the prolactin/vasoinhibin axis. Disturbances of the prolactin/vasoinhibin axis are associated with the pathogenesis of retinal and cardiac diseases and with diseases occurring during pregnancy. New phylogenetical, physiological, and clinical implications are discussed.


Ukken F.P.,University of Cologne | Ukken F.P.,University of Wisconsin - Madison | Aprill I.,Directors Research | JayaNandanan N.,Directors Research | And 2 more authors.
PLoS ONE | Year: 2014

A key element in the regulation of subcellular branching and tube morphogenesis of the Drosophila tracheal system is the organization of the actin cytoskeleton by the ERM protein Moesin. Activation of Moesin within specific subdomains of cells, critical for its interaction with actin, is a tightly controlled process and involves regulatory inputs from membrane proteins, kinases and phosphatases. The kinases that activate Moesin in tracheal cells are not known. Here we show that the Sterile-20 like kinase Slik, enriched at the luminal membrane, is necessary for the activation of Moesin at the luminal membrane and regulates branching and subcellular tube morphogenesis of terminal cells. Our results reveal the FGF-receptor Breathless as an additional necessary cue for the activation of Moesin in terminal cells. Breathless-mediated activation of Moesin is independent of the canonical MAP kinase pathway. © 2014 Ukken et al.

Loading Directors Research collaborators
Loading Directors Research collaborators