ICAR Directorate of Coldwater Fisheries Research

Uttarakhand, India

ICAR Directorate of Coldwater Fisheries Research

Uttarakhand, India

Time filter

Source Type

Barat A.,ICAR Directorate of Coldwater Fisheries Research | Sahoo P.K.,ICAR Directorate of Coldwater Fisheries Research | Kumar R.,ICAR Directorate of Coldwater Fisheries Research | Pande V.,Kumaun University
Comparative Biochemistry and Physiology Part - B: Biochemistry and Molecular Biology | Year: 2016

The solute carriers (SLC) are trans-membrane proteins, those regulate the transport of various substances (sugars, amino acids, nucleotides, inorganic cations/anions, metals, drugs etc.) across the cell membrane. There are more than 338 solute carriers (slc) reported in fishes that play crucial role in cellular influx and efflux. The study of solute carrier families may reveal many answers regarding the function of transporter genes in the species and their effect in the existing environment. Therefore, we performed RNA sequencing of kidney tissue of the golden mahseer (Tor putitora) using Illumina platform to identify the solute carrier families and characterized 24 putative functional genes under 15 solute carrier families. Out of 24 putative functional genes, 11 genes were differentially expressed in different tissues (head kidney, trunk kidney, spleen, liver, gill, muscle, intestine and brain) using qRT-PCR assay. The slc5a1, slc5a12, slc12a3, slc13a3, slc22a13 and slc26a6 were highly expressed in kidney. The slc15a2, slc25a47, slc33a1 and slc38a2 were highly expressed in brain and slc30a5 was over-expressed in gill. The unrooted phylogenetic trees of slc2, slc5, slc13 and slc33 were constructed using amino acid sequences of Homo sapiens, Salmo salar, Danio rerio, Cyprinus carpio and Tor putitora. It appears that all the putative solute carrier families are very much conserved in human and fish species including the present fish, golden mahseer. This study provides the first hand database of solute carrier families particularly transporter encoding proteins in the species. © 2016.


PubMed | ICAR Central Marine Fisheries Research Institute, Central Institute of Fisheries Education, ICAR Directorate of Coldwater Fisheries Research, ICAR Central Inland Fisheries Research Institute and 3 more.
Type: | Journal: BioMed research international | Year: 2016

Docosahexaenoic acid (DHA) is the principal constituent of a variety of cells especially the brain neurons and retinal cells and plays important role in fetal brain development, development of motor skills, and visual acuity in infants, lipid metabolism, and cognitive support and along with eicosapentaenoic acid (EPA) it plays important role in preventing atherosclerosis, dementia, rheumatoid arthritis, Alzheimers disease, and so forth. Being an essential nutrient, it is to be obtained through diet and therefore searching for affordable sources of these -3 polyunsaturated fatty acids (PUFA) is important for consumer guidance and dietary counseling. Fish is an important source of PUFA and has unique advantage that there are many food fish species available and consumers have a wide choice owing to availability and affordability. The Indian subcontinent harbors a rich fish biodiversity which markedly varies in their nutrient composition. Here we report the DHA and EPA content and fatty acid profile of 39 important food fishes (including finfishes, shellfishes, and edible molluscs from both marine water and freshwater) from India. The study showed that fishes Tenualosa ilisha, Sardinella longiceps, Nemipterus japonicus, and Anabas testudineus are rich sources of DHA and EPA. Promotion of these species as DHA rich species would enhance their utility in public health nutrition.


PubMed | ICAR Directorate of Coldwater Fisheries Research
Type: Journal Article | Journal: Mitochondrial DNA. Part A, DNA mapping, sequencing, and analysis | Year: 2015

The complete mitochondrial genome of Salmo trutta fario, commonly known as brown trout, was sequenced using NGS technology. The mitochondrial genome size was determined to be 16 677bp and composed of 13 protein-coding gene (PCG), 22 tRNAs, 2 rRNA genes, and 1 putative control region. The overall mitogenome composition of S. trutta fario is A: 28.13%, G: 16.44%, C: 29.47%, and T: 25.96% with A+T content of 54.09% and G+C content of 45.91%. The gene arrangement and the order are similar to other vertebrates. The phylogenetic tree constructed using 42 complete mitogenomes of Salmonidae fishes confirmed the position of the present species under the genus Salmo of subfamily Salmoninae. NGS platform was proved to be a rapid and time-saving technology to reveal complete mitogenomes.


PubMed | Kumaun University and ICAR Directorate of Coldwater Fisheries Research
Type: | Journal: Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology | Year: 2016

The solute carriers (SLC) are trans-membrane proteins, those regulate the transport of various substances (sugars, amino acids, nucleotides, inorganic cations/anions, metals, drugs etc.) across the cell membrane. There are more than 338 solute carriers (slc) reported in fishes that play crucial role in cellular influx and efflux. The study of solute carrier families may reveal many answers regarding the function of transporter genes in the species and their effect in the existing environment. Therefore, we performed RNA sequencing of kidney tissue of the golden mahseer (Tor putitora) using Illumina platform to identify the solute carrier families and characterized 24 putative functional genes under 15 solute carrier families. Out of 24 putative functional genes, 11 genes were differentially expressed in different tissues (head kidney, trunk kidney, spleen, liver, gill, muscle, intestine and brain) using qRT-PCR assay. The slc5a1, slc5a12, slc12a3, slc13a3, slc22a13 and slc26a6 were highly expressed in kidney. The slc15a2, slc25a47, slc33a1 and slc38a2 were highly expressed in brain and slc30a5 was over-expressed in gill. The unrooted phylogenetic trees of slc2, slc5, slc13 and slc33 were constructed using amino acid sequences of Homo sapiens, Salmo salar, Danio rerio, Cyprinus carpio and Tor putitora. It appears that all the putative solute carrier families are very much conserved in human and fish species including the present fish, golden mahseer. This study provides the first hand database of solute carrier families particularly transporter encoding proteins in the species.


PubMed | ICAR National Institute of Abiotic Stress Management, Central Institute of Fisheries Education, ICAR Central Institute of Brackishwater Aquaculture and ICAR Directorate of Coldwater Fisheries Research
Type: | Journal: Fish & shellfish immunology | Year: 2016

We herein report the protective role of pyridoxine in enhancing thermal tolerance of Milkfish Chanos chanos reared under endosulfan-induced stress. Four isocaloric and isonitrogenous diets were prepared with graded levels of pyridoxine (0, 50, 75 and 100mg/kg). Two hundred and twenty five fishes were randomly distributed into four treatment groups in triplicate, reared under endosulfan-treated water, which were fed with pyridoxine supplemented diet, while the negative control group was reared without endosulfan-treatment and control fed. The concentration of endosulfan in treated water was maintained at a level of 1/40th of LC50 i.e. 0.52g/L. Dietary pyridoxine supplementation had significant (p<0.01) effect on temperature tolerance viz. CTmax (Critical temperature maxima), LTmax (Lethal temperature maxima), CTmin (Critical temperature minima) and LTmin (Lethal temperature minima) of milkfish. The positive correlation was observed between CT max and LTmax (Y=-1.54+15.6x, R(2), 0.943) as well as CTmin and LTmin (Y=-1.44+1.021x, R(2), 0.941). At the end of the thermal tolerance study, antioxidative status and HSP 70 were significantly reduced in pyridoxine supplemented groups, whereas brain AChE was significantly (p<0.01) elevated compared to positive and negative control. It is concluded that CTmax, LTmax, CTmin and LTmin, antioxidative status, neurotransmitter enzyme and HSP 70 strengthened the enhancement of thermal tolerance of Milkfish.


PubMed | Hemwati Nandan Bahuguna Garhwal University and ICAR Directorate of Coldwater Fisheries Research
Type: | Journal: Journal of thermal biology | Year: 2015

We studied the season dependent thermal tolerance, oxygen consumption, respiratory burst response and antioxidative enzyme activities in juveniles of Barilius bendelisis. The critical thermal maximum (CTmax), lethal thermal maximum (LTmax), critical thermal minimum (CTmin) and lethal thermal minimum (LTmin) were significantly different at five different seasons viz. winter (10.64C), spring (16.25C), summer (22.11C), rainy (20.87C) and autumn (17.77C). The highest CTmax was registered in summer (36.02C), and lowest CTmin was recorded during winter (2.77C). Water temperature, dissolved oxygen and pH were strongly related to CTmax, LTmax, CTmin and LTmin suggesting seasonal acclimatization of B. bendelisis. The thermal tolerance polygon area of the B. bendelisis juveniles within the range of seasonal temperature (10.64-22.11C) was calculated as 470.92C(2). Oxygen consumption rate was significantly different (p<0.05) between seasons with maximum value during summer (57.66mgO2/kg/h) and lowest in winter (32.60mgO2/kg/h). Total white blood cell count including neutrophil and monocytes also showed significant difference (p<0.05) between seasons with maximum value during summer and minimum number in winter and were found correlated to temperature, dissolved oxygen, pH and respiratory burst activity. Respiratory burst activity of blood phagocytes significantly differed (p<0.05) among seasons with higher value during summer (0.163 OD540nm) and minimum in winter season (0.054 OD540nm). The activity of superoxide dismutase, catalase and glutathione-s-transferase both in liver and gill, also varied significantly (p<0.05) during different seasons. Overall results of this study suggest that multiple environmental factors play a role in seasonal acclimation in B. bendelisis, which modulate the thermal tolerance, oxygen consumption, respiratory burst activity and status of anti-oxidative potential in wild environment.


PubMed | ICAR Central Marine Fisheries Research Institute, ICAR Directorate of Coldwater Fisheries Research, ICAR Central Inland Fisheries Research Institute, ICAR Central Institute of Brackishwater Aquaculture and 2 more.
Type: Journal Article | Journal: Biological trace element research | Year: 2016

The micronutrients (vitamins and minerals) are required in small amounts but are essential for health, development, and growth. Micronutrient deficiencies, which affect over two billion people around the globe, are the leading cause of many ailments including mental retardation, preventable blindness, and death during childbirth. Fish is an important dietary source of micronutrients and plays important role in human nutrition. In the present investigation, micronutrient composition of 35 food fishes (includes both finfishes and shellfishes) was investigated from varying aquatic habitats. Macrominerals (Na, K, Ca, Mg) and trace elements (Fe, Cu, Zn, Mn, Se) were determined by either atomic absorption spectroscopy (AAS) or inductively coupled plasma mass spectrometry (ICP-MS)/atomic emission spectrometry (ICP-AES). Phosphorus content was determined either spectrophotometrically or by ICP-AES. Fat-soluble vitamins (A, D, E, K) were analyzed by high-performance liquid chromatography (HPLC). The analysis showed that, in general, the marine fishes were rich in sodium and potassium; small indigenous fishes (SIFs) in calcium, iron, and manganese; coldwater fishes in selenium; and the brackishwater fishes in phosphorous. The marine fishes Sardinella longiceps and Epinephelus spp. and the SIFs were rich in all fat-soluble vitamins. All these recommendations were made according to the potential contribution (daily value %) of the species to the recommended daily allowance (RDA). Information on the micronutrients generated would enhance the utility of fish in both community and clinical nutrition.


PubMed | ICAR Directorate of Coldwater Fisheries Research, ICAR Central Marine Fisheries Research Institute, ICAR Central Institute of Fisheries Technology, ICAR Central Inland Fisheries Research Institute and Indian Central Institute of Freshwater Aquaculture
Type: | Journal: Journal of amino acids | Year: 2014

Proteins and amino acids are important biomolecules which regulate key metabolic pathways and serve as precursors for synthesis of biologically important substances; moreover, amino acids are building blocks of proteins. Fish is an important dietary source of quality animal proteins and amino acids and play important role in human nutrition. In the present investigation, crude protein content and amino acid compositions of important food fishes from different habitats have been studied. Crude protein content was determined by Kjeldahl method and amino acid composition was analyzed by high performance liquid chromatography and information on 27 food fishes was generated. The analysis showed that the cold water species are rich in lysine and aspartic acid, marine fishes in leucine, small indigenous fishes in histidine, and the carps and catfishes in glutamic acid and glycine. The enriched nutrition knowledge base would enhance the utility of fish as a source of quality animal proteins and amino acids and aid in their inclusion in dietary counseling and patient guidance for specific nutritional needs.


PubMed | ICAR Directorate of Coldwater Fisheries Research
Type: | Journal: Meta gene | Year: 2015

The golden mahseer (Tor putitora) graces most of the Himalayan Rivers of India and neighboring South Asian countries. Despite its several importance as a research model, as food, and in sport fishing, knowledge on transcriptome database is nil. Therefore, it was targeted to develop reference transcriptome databases of the species using next-generation sequencing. In the present study, 100,540,130 high-quality paired-end reads were obtained from six cDNA libraries of spleen, liver, gill, kidney, muscle, and brain with 28.4GB data using Illumina paired-end sequencing technology. Tissue-specific transcriptomes as well as complete transcriptome assembly were analyzed for concise representation of the study. In brief, the de novo assembly of individual tissue resulted in an average of 31,829 (18,512-46,348) contigs per sample, while combined transcriptome comprised 77,907 unique transcript fragments (unigenes) assembled from reads of six tissues. Approximately 75,407 (96.8%) unigenes could be annotated according to their homology matches in the nr, SwisseProt, GO, or KEGG databases. Comparative analysis showed that 84% of the unigenes have significant similarity to zebra fish RefSeq proteins. Tissue-specific-dominated genes were also identified to hypothesize their localization and expression in individual tissue. In addition, 2485 simple sequence repeats (SSRs) were detected from 77,907 transcripts in the combined transcriptome of the golden mahseer. This study has generated organ-specific transcriptome profiles, which will be helpful to understand the local adaptation, genome evolution, and also future functional studies on immune system of the golden mahseer.


PubMed | ICAR Directorate of Coldwater Fisheries Research
Type: Journal Article | Journal: Journal of fish biology | Year: 2016

Ultrastructural and histological changes in the embryonic and larval surface during ontogenesis of the endangered golden mahseer Tor putitora is studied here for the first time. Embryonic development was completed 91-92h after fertilization at an ambient temperature of 231C (means.d.). The gastrula stage was characterized by presence of the Kupffers vesicle, notochord, ectoderm and endoderm cells. Primordial germ cells were clearly identifiable from c. 55h post-fertilization at the organogenesis stage. Mean total length of newly hatched larvae was 7005mm. Scanning electron microscopy of newly hatched larvae demonstrated vitelline arteries, microridged epithelial cells and mucous gland openings over much of the body surface. Eye, oral cavity, pharyngeal arches, heart, intestinal loop, prosencephalon, cephalic vesicle and nasal epithelium were clearly distinguished in 3day old hatched individuals. In 6day old individuals, caudal-fin rays and internal organs were evident. The dorsal fin became prominent at this stage and larvae began swimming at the surface. The reserved yolk material was totally absorbed 8-11days after hatching and larvae began feeding exogenously. Tor putitora exhibited a longer early developmental period than other cyprinids reared at similar temperatures.

Loading ICAR Directorate of Coldwater Fisheries Research collaborators
Loading ICAR Directorate of Coldwater Fisheries Research collaborators