Perth, Australia
Perth, Australia

Time filter

Source Type

See H.B.,University of Western Australia | Seeber R.M.,University of Western Australia | Kocan M.,University of Western Australia | Kocan M.,Monash Institute of Pharmaceutical Sciences | And 3 more authors.
Assay and Drug Development Technologies | Year: 2011

Understanding the role of G protein-coupled receptor (GPCR; also known as a 7 transmembrane receptor) heteromerization in the physiology and pathophysiology of cellular function has now become a major research focus. However, there is currently a lack of cell-based assays capable of profiling the specific functional consequences of heteromerization in a ligand-dependent manner. Understanding the pharmacology specifically associated with heteromer function in contrast to monomer or homomer function enables the so-called biochemical fingerprints of the receptor heteromer to be ascertained. This is the first step in establishing the physiological relevance of heteromerization, the goal of everyone in the field, as these fingerprints can then be utilized in future endeavors to elucidate heteromer function in native tissues. The simple, robust, ligand-dependent methodology described in this study utilizes a novel configuration of components of a proximity-based reporter system. This is exemplified by the use of bioluminescence resonance energy transfer due to the advantages of real-time live cell monitoring of proximity specifically between the heteromer complex and a protein that is recruited in a ligand-dependent manner, in this case, β-arrestin 2. Further, the demonstration of Z′-factor values in excess of 0.6 shows the potential of the method for screening compounds for heteromer-selective or biased activity. Three previously characterized GPCR heteromers, the chemokine receptor heteromers CCR2-CCR5 and CCR2-CXCR4, as well as the angiotensin II receptor type 1-bradykinin receptor type 2 heteromer, have been used to illustrate the profiling capability and specificity of the GPCR heteromer identification technology. © Copyright 2011, Mary Ann Liebert, Inc. 2011.


Jaeger W.C.,University of Western Australia | Armstrong S.P.,University of Western Australia | Hill S.J.,University of Nottingham | Pfleger K.D.G.,University of Western Australia | Pfleger K.D.G.,Dimerix Bioscience Pty Ltd
Frontiers in Endocrinology | Year: 2014

Guanine nucleotide binding protein (G protein)-coupled receptors (GPCRs) function in complexes with a range of molecules and proteins including ligands, G proteins, arrestins, ubiquitin, and other receptors. Elements of these complexes may interact constitutively or dynamically, dependent upon factors such as ligand binding, phosphorylation, and dephosphorylation. They may also be allosterically modulated by other proteins in a manner that changes temporally and spatially within the cell. Elucidating how these complexes function has been greatly enhanced by biophysical technologies that are able to monitor proximity and/or binding, often in real time and in live cells. These include resonance energy transfer approaches such as bioluminescence resonance energy transfer (BRET) and fluorescence resonance energy transfer (FRET). Furthermore, the use of fluorescent ligands has enabled novel insights into allosteric interactions between GPCRs. Consequently, biophysical approaches are helping to unlock the amazing diversity and bias in G protein-coupled receptor signaling. © 2014 Jaeger, Armstrong, Hill and Pfleger.


Johnstone E.K.M.,University of Western Australia | Pfleger K.D.G.,University of Western Australia | Pfleger K.D.G.,Dimerix Bioscience Pty Ltd
Frontiers in Endocrinology | Year: 2012

Receptor heteromerization has the potential to alter every facet of receptor functioning, leading to new pharmacological profiles with increased signaling diversity and regulation from that of the monomeric receptor, or indeed receptor homomer. An understanding of the molecular consequences of receptor heteromerization will provide new insights into the physiology and pathology mediated by receptors, expanding the possibilities for pharmacological discovery. Particularly advantageous approaches to investigate novel het-eromer pharmacology utilize cell-based assay technologies that assess ligand-dependent functional responses specific to the receptor heteromer. Importantly, this allows for differentiation of heteromer-specific pharmacology from pharmacology associated with the co-expressed receptor monomers and homomers. The Receptor-Heteromer Investigation Technology (Receptor-HIT) successfully employs a proximity-based reporter system, such as bioluminescence resonance energy transfer (BRET), in a configuration that enables determination of such heteromer-specific pharmacology. Therefore, Receptor-HIT provides a simple, robust and versatile approach for investigating the elusive "biochemical fingerprint" of receptor heteromers. © 2012 Johnstone and Pfleger.


Ayoub M.A.,University of Western Australia | Ayoub M.A.,King Saud University | See H.B.,University of Western Australia | Seeber R.M.,University of Western Australia | And 3 more authors.
PLoS ONE | Year: 2013

Heteromerization can play an important role in regulating the activation and/or signal transduction of most forms of receptors, including receptor tyrosine kinases (RTKs). The study of receptor heteromerization has evolved extensively with the emergence of resonance energy transfer based approaches such as bioluminescence resonance energy transfer (BRET). Here, we report an adaptation of our Receptor-Heteromer Investigation Technology (Receptor-HIT) that has recently been published as the G protein-coupled receptor (GPCR) Heteromer Identification Technology (GPCR-HIT). We now demonstrate the utility of this approach for investigating RTK heteromerization by examining the functional interaction between the epidermal growth factor (EGF) receptor (EGFR; also known as erbB1/HER1) and heregulin (HRG) receptor 3 (HER3; also known as erbB3) in live HEK293FT cells using recruitment of growth factor receptor-bound protein 2 (Grb2) to the activated receptors. We found that EGFR and HER3 heteromerize specifically as demonstrated by HRG inducing a BRET signal between EGFR/Rluc8 and Grb2/Venus only when HER3 was co-expressed. Similarly, EGF stimulation promoted a specific BRET signal between HER3/Rluc8 and Grb2/Venus only when EGFR was co-expressed. Both EGF and HRG effects on Grb2 interaction are dose-dependent, and specifically blocked by EGFR inhibitor AG-1478. Furthermore, truncation of HER3 to remove the putative Grb2 binding sites appears to abolish EGF-induced Grb2 recruitment to the EGFR-HER3 heteromer. Our results support the concept that EGFR interacts with Grb2 in both constitutive and EGF-dependent manners and this interaction is independent of HER3 co-expression. In contrast, HER3-Grb2 interaction requires the heteromerization between EGFR and HER3. These findings clearly indicate the importance of EGFR-HER3 heteromerization in HER3-mediated Grb2-dependent signaling pathways and supports the central role of HER3 in the diversity and regulation of HER family functioning. © 2013 Ayoub et al.


Mustafa S.,University of Western Australia | Pfleger K.D.G.,University of Western Australia | Pfleger K.D.G.,Dimerix Bioscience Pty Ltd
Journal of Laboratory Automation | Year: 2011

Traditionally, G protein-coupled receptors (GPCRs) were thought to function as monomeric units activating linear signaling pathways to reach a single functional response. However, it is now recognized that GPCRs can exist as higher order structures, such as homomers or heteromers. The potential for unique pharmacology attributed to these GPCR complexes has opened up the possibility of a new class of targets that can be exploited for drug discovery. In this innovation brief, a novel technology developed to identify and profile GPCR heteromers and their ligands will be reviewed. © 2011 Society for Laboratoy Automation and Screening.


Mustafa S.,University of Western Australia | Ayoub M.A.,University of Western Australia | Pfleger K.D.G.,University of Western Australia | Pfleger K.D.G.,Dimerix Bioscience Pty Ltd.
Drug Discovery Today: Technologies | Year: 2010

The formation of complexes involving different G-protein-coupled receptors (GPCRs) is now an established phenomenon, termed heteromerization. The relevance of higher order structures, in particular heteromerization, has been demonstrated by differential pharmacology displayed by GPCR heteromers compared to monomers/homomers of the respective constituent receptor units. The concepts of heteromerization and heteromer-selective/biased ligands introduce exciting opportunities for enhancing signal specificity and therefore have the potential to play a crucial role in future drug discovery. © 2010 Elsevier Ltd. All rights reserved.


Patent
Dimerix Bioscience Pty Ltd | Date: 2012-01-11

The invention relates to pharmaceutical compositions comprising: (a) at least one angiotensin receptor blocker or a pharmaceutically acceptable salt thereof, and (b) at least one chemokine receptor pathway inhibitor or a pharmaceutically acceptable salt thereof. The invention also relates to pharmaceutical compositions comprising: (a) at least one angiotensin receptor blocker or a pharmaceutically acceptable salt thereof; and (b) at least one chemokine receptor pathway inhibitor or a pharmaceutically acceptable salt thereof which inhibits a component of the chemokine receptor pathway other than the chemokine receptor. Oral sustained release pharmaceutical compositions comprising the pharmaceutical composition, as well as injectable sustained release pharmaceutical compositions comprising the pharmaceutical composition are described. The invention further relates to tablets, capsules, injectable suspensions, and compositions for pulmonary or nasal delivery comprising the pharmaceutical composition. Also described are: methods for assessing the efficacy of the pharmaceutical composition; methods for assessing the inhibition or partial inhibition activity of the pharmaceutical composition; methods for the treatment, amelioration or prevention of a condition or disease comprising administering to a subject a therapeutically effective amount of the pharmaceutical composition; and the use of the pharmaceutical composition for the manufacture of a dosage form for the treatment of a disease.


Patent
Dimerix Bioscience Pty Ltd. | Date: 2010-03-26

A hetero-dimeric or hetero-oligomeric receptor, comprising at least one chemokine receptor subunit associated with at least one angiotensin receptor subunit.


Patent
Dimerix Bioscience Pty Ltd. | Date: 2012-09-10

A system for the detection of molecular associations, the system comprising: i) a first agent, comprising a first interacting group coupled to a first reporter component; ii) a second agent, comprising a second interacting group coupled to a second reporter component; iii) a third agent, comprising a third interacting group; iv) a modulator; and v) a detector; wherein proximity of the first and second reporter components generates a signal capable of detection by the detector; and wherein the modulator modulates the association of the second interacting group with the third interacting group; such that monitoring the signal generated by proximity of the first and second reporter components by the detector constitutes monitoring the association of the first and third agents.


Patent
Dimerix Bioscience Pty Ltd | Date: 2016-03-31

The invention relates to pharmaceutical compositions comprising: (a) at least one angiotensin receptor blocker or a pharmaceutically acceptable salt thereof, and (b) at least one chemokine receptor pathway inhibitor or a pharmaceutically acceptable salt thereof. The invention also relates to pharmaceutical compositions comprising: (a) at least one angiotensin receptor blocker or a pharmaceutically acceptable salt thereof; and (b) at least one chemokine receptor pathway inhibitor or a pharmaceutically acceptable salt thereof which inhibits a component of the chemokine receptor pathway other than the chemokine receptor. Oral sustained release pharmaceutical compositions comprising the pharmaceutical composition, as well as injectable sustained release pharmaceutical compositions comprising the pharmaceutical composition are described. The invention further relates to tablets, capsules, injectable suspensions, and compositions for pulmonary or nasal delivery comprising the pharmaceutical composition. Also described are: methods for assessing the efficacy of the pharmaceutical composition; methods for assessing the inhibition or partial inhibition activity of the pharmaceutical composition; methods for the treatment, amelioration or prevention of a condition or disease comprising administering to a subject a therapeutically effective amount of the pharmaceutical composition; and the use of the pharmaceutical composition for the manufacture of a dosage form for the treatment of a disease.

Loading Dimerix Bioscience Pty Ltd. collaborators
Loading Dimerix Bioscience Pty Ltd. collaborators