Entity

Time filter

Source Type

Watertown, MA, United States

The invention provides compositions and methods for reducing expression of a target gene in a cell, involving contacting a cell with an isolated double stranded nucleic acid (dsNA) in an amount effective to reduce expression of a target gene in a cell. The dsNAs of the invention possess a single stranded extension (in most embodiments, the single stranded extension comprises at least one modified nucleotide and/or phosphate back bone modification). Such single stranded extended Dicer-substrate siRNAs (DsiRNAs) were demonstrated to be effective RNA inhibitory agents compared to corresponding double stranded DsiRNAs.


The invention provides compositions and methods for reducing expression of a target gene in a cell, involving contacting a cell with an isolated double stranded nucleic acid (dsNA) in an amount effective to reduce expression of a target gene in a cell. The dsNAs of the invention possess a single stranded extension (in most embodiments, the single stranded extension comprises at least one modified nucleotide and/or phosphate back bone modification). Such single stranded extended Dicer-substrate siRNAs (DsiRNAs) were demonstrated to be effective RNA inhibitory agents compared to corresponding double stranded DsiRNAs.


The invention provides compositions and methods for reducing expression of a target gene in a cell, involving contacting a cell with an isolated double stranded nucleic acid (dsNA) in an amount effective to reduce expression of a target gene in a cell. The dsNAs of the invention possess a pattern of deoxyribonucleotides (in most embodiments, the pattern comprises at least one deoxyribonucleotide-deoxyribonucleotide base pair) designed to direct the site of Dicer enzyme cleavage within the dsNA molecule. Deoxyribonucleotides of the dsNA molecules of the invention are located within a region of the dsNA that can be excised via Dicer cleavage to generate an active siRNA agent that no longer contains the deoxyribonucleotide pattern (e.g., deoxyribonucleotide-deoxyribonucleotide base pairs). Such DNA-extended Dicer-substrate siRNAs (DsiRNAs) were demonstrated to be more effective RNA inhibitory agents than corresponding double stranded RNA-extended DsiRNAs. DsiRNA agents were also found to tolerate guide strand mismatches.


Patent
Dicerna Pharmaceuticals | Date: 2015-09-11

Formulations comprising anionic agents such as nucleic acids within a lipid-containing particle methods of formulating a lipid-containing particle comprising an anionic agent such as a nucleic acid, methods for preparing a lipid-containing particle comprising an anionic agent such as a nucleic acid, methods for therapeutic delivery of an anionic agent to a patient in need thereof, where the anionic agent is formulated in a lipid-containing particle as described herein.


This invention relates to compounds, compositions, and methods useful for reducing -1 antitrypsin target RNA and protein levels via use of dsRNAs, e.g., Dicer substrate siRNA (DsiRNA) agents.

Discover hidden collaborations