Diamond

Didcot, United Kingdom
Didcot, United Kingdom

Time filter

Source Type

News Article | May 23, 2017
Site: www.prweb.com

After a fast-paced expansion over the past four years, Ontario’s fastest growing personal injury firm now has a loftier goal in mind. As of May 1, Diamond and Diamond Lawyers will revolutionize the legal industry as a whole, providing reasonably priced access to justice for the masses. “It wasn’t always our goal to move to full service,” said managing lawyer, Jeremy Diamond. “We listened to what our customer base was demanding and we noticed that many were intimidated by corporate law firms and daunting retainers.” Dubbed “The People’s Law Firm” Diamond and Diamond are extending their service offering to include real estate purchase and sale, wills and estates, mortgage refinances, and uncontested divorce and separation agreements. These new services will be priced as a flat fee and provide a seamless legal transaction experience for any individual. Further details regarding pricing will be available on the Diamond and Diamond's homepage, as of today. “What has made us so successful in the personal injury space is our approachability,” said Jeremy Diamond. “We believe in access to justice for all our clients and we will continue to fight for them, regardless of which type of legal service they require.” In addition to the full service announcement, Diamond and Diamond has plans to move west, opening up their 13th office in Vancouver next month. -Family owned firm has grown from 1 office in Toronto to 13 locations in a mere 4 years and is Ontario's fastest growing Personal Injury Firm. -Winner of 7 readers choice awards, 3 Year Winner of the Consumer's Choice Award -Featured legal commentators on 20+ radio and television stations as well as print media -Sponsorships with Canada’s biggest sporting franchises (Toronto Raptors, Toronto Maple Leafs, Toronto Marlies, Ottawa Senators, Toronto Rock as well as OHL teams across Ontario) -2016 Leger Polling shows evidence of unparalleled brand awareness. Nearly 70% of GTA residents are aware of the firm with only 3% able to name a competitor of the firm.


News Article | June 19, 2017
Site: www.eurekalert.org

An international team of scientists has for the first time used an X-ray free-electron laser to unravel the structure of an intact virus particle on the atomic level. The method used dramatically reduces the amount of virus material required, while also allowing the investigations to be carried out several times faster than before. This opens up entirely new research opportunities, as the research team lead by DESY scientist Alke Meents reports in the journal Nature Methods. In the field known as structural biology, scientists examine the three-dimensional structure of biological molecules in order to work out how they function. This knowledge enhances our understanding of the fundamental biological processes taking place inside organisms, such as the way in which substances are transported in and out of a cell, and can also be used to develop new drugs. "Knowing the three-dimensional structure of a molecule like a protein gives great insight into its biological behaviour," explains co-author David Stuart, Director of Life Sciences at the synchrotron facility Diamond Light Source in the UK and a professor at the University of Oxford. "One example is how understanding the structure of a protein that a virus uses to 'hook' onto a cell could mean that we're able to design a defence for the cell to make the virus incapable of attacking it." X-ray crystallography is by far the most prolific tool used by structural biologists and has already revealed the structures of thousands of biological molecules. Tiny crystals of the protein of interest are grown, and then illuminated using high-energy X-rays. The crystals diffract the X-rays in characteristic ways so that the resulting diffraction patterns can be used to deduce the spatial structure of the crystal - and hence of its components - on the atomic scale. However, protein crystals are nowhere near as stable and sturdy as salt crystals, for example. They are difficult to grow, often remaining tiny, and are easily damaged by the X-rays. "X-ray lasers have opened up a new path to protein crystallography, because their extremely intense pulses can be used to analyse even extremely tiny crystals that would not produce a sufficiently bright diffraction image using other X-ray sources," adds co-author Armin Wagner from Diamond Light Source. However, each of these microcrystals can only produce a single diffraction image before it evaporates as a result of the X-ray pulse. To perform the structural analysis, though, hundreds or even thousands of diffraction images are needed. In such experiments, scientists therefore inject a fine liquid jet of protein crystals through a pulsed X-ray laser, which releases a rapid sequence of extremely short bursts. Each time an X-ray pulse happens to strike a microcrystal, a diffraction image is produced and recorded. This method is very successful and has already been used to determine the structure of more than 80 biomolecules. However, most of the sample material is wasted. "The hit rate is typically less than two per cent of pulses, so most of the precious microcrystals end up unused in the collection container," says Meents, who is based at the Center for Free-Electron Laser Science (CFEL) in Hamburg, a cooperation of DESY, the University of Hamburg and the German Max Planck Society. The standard method therefore typically requires several hours of beamtime and significant amounts of sample material. In order to use the limited beamtime and the precious sample material more efficiently, the team developed a new method. The scientists use a micro-patterned chip containing thousands of tiny pores to hold the protein crystals. The X-ray laser then scans the chip line by line, and ideally this allows a diffraction image to be recorded for each pulse of the laser. The research team tested its method on two different virus samples using the LCLS X-ray laser at the SLAC National Accelerator Laboratory in the US, which produces 120 pulses per second. They loaded their sample holder with a small amount of microcrystals of the bovine enterovirus 2 (BEV2), a virus that can cause miscarriages, stillbirths, and infertility in cattle, and which is very difficult to crystallise. In this experiment, the scientists achieved a hit rate - where the X-ray laser successfully targeted the crystal - of up to nine per cent. Within just 14 minutes they had collected enough data to determine the correct structure of the virus - which was already known from experiments at other X-ray light sources - down to a scale of 0.23 nanometres (millionths of a millimetre). "To the best of our knowledge, this is the first time the atomic structure of an intact virus particle has been determined using an X-ray laser," Meents points out. "Whereas earlier methods at other X-ray light sources required crystals with a total volume of 3.5 nanolitres, we managed using crystals that were more than ten times smaller, having a total volume of just 0.23 nanolitres." This experiment was conducted at room temperature. While cooling the protein crystals would protect them to some extent from radiation damage, this is not generally feasible when working with extremely sensitive virus crystals. Crystals of isolated virus proteins can, however, be frozen, and in a second test, the researchers studied the viral protein polyhedrin that makes up a viral occlusion body for up to several thousands of virus particles of certain species. The virus particles use these containers to protect themselves against environmental influences and are therefore able to remain intact for much longer times. For the second test, the scientist loaded their chip with polyhedrin crystals and examined them using the X-ray laser while keeping the chip at temperatures below minus 180 degrees Celsius. Here, the scientists achieved a hit rate of up to 90 per cent. In just ten minutes they had recorded more than enough diffraction images to determine the protein structure to within 0.24 nanometres. "For the structure of polyhedrin, we only had to scan a single chip which was loaded with four micrograms of protein crystals; that is orders of magnitude less than the amount that would normally be needed," explains Meents. "Our approach not only reduces the data collection time and the quantity of the sample needed, it also opens up the opportunity of analysing entire viruses using X-ray lasers," Meents sums up. The scientists now want to increase the capacity of their chip by a factor of ten, from 22,500 to some 200,000 micropores, and further increase the scanning speed to up to one thousand samples per second. This would better exploit the potential of the new X-ray free-electron laser European XFEL, which is just going into operation in the Hamburg region and which will be able to produce up to 27,000 pulses per second. Furthermore, the next generation of chips will only expose those micropores that are currently being analysed, to prevent the remaining crystals from being damaged by scattered radiation from the X-ray laser. Researchers from the University of Oxford, the University of Eastern Finland, the Swiss Paul Scherrer Institute, the Lawrence Berkeley National Laboratory in the US and SLAC were also involved in the research. Diamond scientists have collaborated with the team at DESY, with much of the development and testing of the micro-patterned chip being done on Diamond's I02 and I24 beamlines. Diamond Light Source is the UK's synchrotron science facility, and is approximately the size of Wembley Stadium. It works like a giant microscope, harnessing the power of electrons to produce bright light that scientists can use to study anything from fossils to jet engines to viruses and vaccines. Diamond is one of the most advanced scientific facilities in the world, and its pioneering capabilities are helping to keep the UK at the forefront of scientific research. 2017 marks a double celebration for Diamond - 15 years since the company was formed, and 10 years of research and innovation. In this time, researchers who have obtained their data at Diamond have authored over 5,000 papers. Deutsches Elektronen-Synchrotron DESY is one of the world's leading particle accelerator centres. Researchers use the large-scale facilities at DESY to explore the microcosm in all its variety - ranging from the interaction of tiny elementary particles to the behaviour of innovative nanomaterials and biomolecules to the fundamental mysteries of the universe. The accelerators and detectors that DESY develops and builds at its locations in Hamburg and Zeuthen are unique tools for science and research. DESY is a member of the Helmholtz Association, Germany's largest scientific organisation, and receives its funding from the German Federal Ministry of Education and Research (BMBF) (90 per cent) and the German federal states of Hamburg and Brandenburg (10 per cent).


Wunderer C.B.,German Electron Synchrotron | Allahgholi A.,German Electron Synchrotron | Bayer M.,German Electron Synchrotron | Bianco L.,German Electron Synchrotron | And 51 more authors.
Journal of Synchrotron Radiation | Year: 2016

With the increased brilliance of state-of-the-art synchrotron radiation sources and the advent of free-electron lasers (FELs) enabling revolutionary science with EUV to X-ray photons comes an urgent need for suitable photon imaging detectors. Requirements include high frame rates, very large dynamic range, single-photon sensitivity with low probability of false positives and (multi)-megapixels. At DESY, one ongoing development project-in collaboration with RAL/STFC, Elettra Sincrotrone Trieste, Diamond, and Pohang Accelerator Laboratory-is the CMOS-based soft X-ray imager PERCIVAL. PERCIVAL is a monolithic active-pixel sensor back-thinned to access its primary energy range of 250 eV to 1 keV with target efficiencies above 90%. According to preliminary specifications, the roughly 10 cm × 10 cm, 3.5k × 3.7k monolithic sensor will operate at frame rates up to 120 Hz (commensurate with most FELs) and use multiple gains within 27 μm pixels to measure 1 to ∼ 100000 (500 eV) simultaneously arriving photons. DESY is also leading the development of the AGIPD, a high-speed detector based on hybrid pixel technology intended for use at the European XFEL. This system is being developed in collaboration with PSI, University of Hamburg, and University of Bonn. The AGIPD allows singlepulse imaging at 4.5 MHz frame rate into a 352-frame buffer, with a dynamic range allowing single-photon detection and detection of more than 10000 photons at 12.4 keV in the same image. Modules of 65k pixels each are configured to make up (multi)megapixel cameras. This review describes the AGIPD and the PERCIVAL concepts and systems, including some recent results and a summary of their current status. It also gives a short overview over other FEL-relevant developments where the Photon Science Detector Group at DESY is involved. © 2016 International Union of Crystallography.


PubMed | Stfc Ral, University of Bonn, Diamond, German Electron Synchrotron and 4 more.
Type: Journal Article | Journal: Journal of synchrotron radiation | Year: 2015

With the increased brilliance of state-of-the-art synchrotron radiation sources and the advent of free-electron lasers (FELs) enabling revolutionary science with EUV to X-ray photons comes an urgent need for suitable photon imaging detectors. Requirements include high frame rates, very large dynamic range, single-photon sensitivity with low probability of false positives and (multi)-megapixels. At DESY, one ongoing development project - in collaboration with RAL/STFC, Elettra Sincrotrone Trieste, Diamond, and Pohang Accelerator Laboratory - is the CMOS-based soft X-ray imager PERCIVAL. PERCIVAL is a monolithic active-pixel sensor back-thinned to access its primary energy range of 250eV to 1keV with target efficiencies above 90%. According to preliminary specifications, the roughly 10cm 10cm, 3.5k 3.7k monolithic sensor will operate at frame rates up to 120Hz (commensurate with most FELs) and use multiple gains within 27m pixels to measure 1 to 100000 (500eV) simultaneously arriving photons. DESY is also leading the development of the AGIPD, a high-speed detector based on hybrid pixel technology intended for use at the European XFEL. This system is being developed in collaboration with PSI, University of Hamburg, and University of Bonn. The AGIPD allows single-pulse imaging at 4.5MHz frame rate into a 352-frame buffer, with a dynamic range allowing single-photon detection and detection of more than 10000 photons at 12.4keV in the same image. Modules of 65k pixels each are configured to make up (multi)megapixel cameras. This review describes the AGIPD and the PERCIVAL concepts and systems, including some recent results and a summary of their current status. It also gives a short overview over other FEL-relevant developments where the Photon Science Detector Group at DESY is involved.


Thomas C.,Diamond | Rehm G.,Diamond | Bartolini R.,Diamond | Delerue N.,University of Oxford | Bajlekov S.,University of Oxford
IPAC 2010 - 1st International Particle Accelerator Conference | Year: 2010

Single shot emittance measurement is essential to assess the performance of new generation light sources such as linac based X-ray FELs or laser plasma wakefield accelerators. To this end, we have developed a single shot transverse emittance measurement using at least 4 screens inserted in the beam at the same time, measuring the beam size at different positions in a drift space in one shot. We present here test measurements performed at Diamond in the transfer line from the Booster to the Storage Ring, using thin OTR screens. Additionally, we compare these measurements with results from the more conventional quadrupole scan method. The validity and limits of the new method are also discussed.

Loading Diamond collaborators
Loading Diamond collaborators