Developmental Exposure Alcohol Research Center

Baltimore, MD, United States

Developmental Exposure Alcohol Research Center

Baltimore, MD, United States
SEARCH FILTERS
Time filter
Source Type

Gano A.,Developmental Exposure Alcohol Research Center | Pautassi R.M.,National University of Cordoba | Doremus-Fitzwater T.L.,Ithaca College | Deak T.,Developmental Exposure Alcohol Research Center
Experimental Biology and Medicine | Year: 2017

Several studies indicate that the immune system can be subjected to classical conditioning. Acute ethanol intoxication significantly modulates several pro-inflammatory cytokines (e.g. interleukins-1 and 6 [IL-1β and IL-6, respectively] and tumor necrosis factor alpha [TNFα])) in several brain areas, including amygdala (AMG), paraventricular nucleus (PVN), and hippocampus (HPC). It is unknown, however, whether cues associated with ethanol can elicit conditioned alterations in cytokine expression. The present study analyzed, in male Sprague-Dawley rats, whether ethanol-induced changes in the central cytokine response may be amenable to conditioning. In Experiments 1 and 2, the rats were given one or two pairings between a distinctive odor (conditional stimulus, CS) and the post-absorptive effects of a high (3.0 or 4.0 g/kg, Experiments 1 and 2, respectively) ethanol dose. Neither of these experiments revealed conditioning of IL-6, IL-1β, or TNFα, as measured via mRNA levels. Yet, re-exposure to the lemon-odor CS in Experiment 1 significantly increased C-Fos levels in the PVN. In Experiment 3, the rats were given four pairings between an odor CS and a moderate ethanol dose (2.0 g/kg), delivered intraperitoneally (i.p.) or intragastrically (i.g.). Re-exposure to the odor CS significantly increased IL-6 levels in HPC and AMG, an effect only evident in paired rats administered ethanol i.p. Overall, this study suggests that ethanol exposure can regulate the levels of IL-6 at HPC and AMG via classical conditioning mechanisms. These ethanol-induced, conditioned alterations in cytokine levels may ultimately affect the intake and motivational effects of ethanol. Impact statement: This study examines, across three experiments, whether odor cues associated with ethanol exposure can condition changes in cytokine expression. The analysis of ethanol-induced conditioning of immune responses is a novel niche that can help understand the transition from social drinking to alcohol abuse and dependence. Ethanol-induced conditioning of the immune system could likely exacerbate neuroinflammation and drug-related toxicity, which in turn may facilitate further engagement in ethanol intake. The main new finding of the present study was that, after four pairings of ethanol’s unconditioned effects and a distinctive odor, the latter CS increased IL-6 levels in HPC and AMG. This suggests that ethanol’s effects upon IL-6 in HPC and AMG may come under conditioned control, particularly after repeated pairings between distinctive odor cues and ethanol’s effects. This article advances our knowledge of conditioned increases in cytokine responses, which should help understand the mechanisms underlying alcohol use, abuse, and relapse. © 2017, © 2017 by the Society for Experimental Biology and Medicine.


Middleton F.A.,SUNY Upstate Medical University | Varlinskaya E.I.,Developmental Exposure Alcohol Research Center | Varlinskaya E.I.,Binghamton University State University of New York | Mooney S.M.,Developmental Exposure Alcohol Research Center | Mooney S.M.,University of Maryland, Baltimore
Developmental Neuroscience | Year: 2012

Prenatal ethanol exposure is associated with, and is a risk factor for, developmental disorders with abnormal social behaviors, including autism spectrum disorders. We hypothesize that the specific effects of ethanol on social behavior are defined by the timing of the exposure as well as subsequent changes in brain regions such as the amygdala and ventral striatum. We recently reported that in utero ethanol exposure on gestational day 12 alters social behaviors of weanling [postnatal day (P) 28], adolescent (P42), and young adult (P75) rats. Male, but not female, offspring of the ethanol-exposed dams showed significant decreases in social investigation (sniffing of a social partner), contact behavior (grooming or crawling over/under the partner), and play fighting (following, chasing, nape attacks, or pinning) at all ages tested with maximal effects at P28 and P42. Furthermore, ethanol-exposed males and females showed evidence of social avoidance at P42 and P75. The present study sought to test whether a form of social enrichment could normalize any of the social deficits and what the molecular mechanisms of such effects might be. We found that housing rats with nonmanipulated control rats normalized the social avoidance phenotype normally seen when they are housed with sex-matched prenatal ethanol-exposed littermates. There was no mitigation of the other ethanol-induced behavioral deficits. Conversely, male control-treated rats housed with nonlittermates showed deficits in play fighting, social investigation and contact behavior. Molecular analyses of the amygdala and ventral striatum of adolescent rats following fetal ethanol exposure indicated several specific neurotransmitter systems and pathways that might underlie the social avoidance phenotype as well as its reversal. Copyright © 2012 S. Karger AG, Basel.


Mooney S.M.,SUNY Upstate Medical University | Varlinskaya E.I.,Developmental Exposure Alcohol Research Center | Varlinskaya E.I.,Binghamton University State University of New York
Behavioural Brain Research | Year: 2011

During development of the central nervous system, neurons pass through critical periods of vulnerability to environmental factors. Exposure to ethanol during gastrulation or during neuronal generation results in a permanent reduction in the number of neurons in trigeminal-associated cranial nerve nuclei. Normal functioning of the trigeminal system is required for social behavior, the present study examined the effects of acute prenatal exposure to ethanol on social interactions across ontogeny. Pregnant Long-Evans rats were injected with 2.9. g/kg ethanol (i.p., 20%, v/v solution; peak blood ethanol concentrations of ∼300. mg/dl) or an equivalent volume of saline on gestational day (G) 7 (gastrulation) or G12 (neuronal generation). Subsequently, social investigation, play fighting, contact behavior, social motivation, and overall locomotor activity in the social context were assessed in male and female off-spring during early adolescence, late adolescence, or adulthood, on postnatal day (P) 28, P42, or P75, respectively, using a modified social interaction test. Ethanol exposure on G7 resulted in mild changes of social behavior evident in young adolescents only. In contrast, animals exposed to ethanol on G12 demonstrated pronounced behavioral deficits throughout ontogeny, with deficits being most robust in male off-spring. Males exposed to ethanol on G12 showed decreases in social investigation, contact behavior, and play fighting, whereas a decrease in social motivation, i.e., transformation of social preference into social avoidance, was evident at P42 and P75 regardless of sex. These findings show that acute exposure to ethanol alters social behavior, and that the timing of the exposure defines the behavioral outcome. © 2010 Elsevier B.V.


Varlinskaya E.I.,Binghamton University State University of New York | Mooney S.M.,Developmental Exposure Alcohol Research Center | Mooney S.M.,University of Maryland, Baltimore | Mooney S.M.,SUNY Upstate Medical University
Behavioural Brain Research | Year: 2014

Alterations in social behavior are a hallmark of many neurodevelopmental disorders in humans. In rodents, social behavior is affected by prenatal insults. The outcomes are dependent on the timing of the insult as well as the sex and age of the animal tested. The limbic system is particularly important for social behavior, and a peak of neurogenesis within this system occurs on gestational day (G)15. Neurons appear particularly vulnerable to ethanol insult around the time they become post-mitotic. We tested the hypothesis that acute exposure to ethanol on G15 would result in significant social behavior deficits. Accordingly, Long Evans pregnant females were injected with ethanol (2.9. g/kg) or an equivalent volume of saline on G15. Offspring were assessed in a modified social interaction test on postnatal day (P) 28, P42, or P75, i.e., during early adolescence, late adolescence, or young adulthood. Prenatal ethanol exposure decreased social investigation in P28 females and transformed social preference into social avoidance in 75-day-old females. Contact behavior, play fighting, and locomotor activity differed as a function of age, but were not significantly affected by ethanol exposure. Males demonstrated significantly more contact behavior and play fighting at P42 than at P28 or P70, whereas there were no age-related changes in females. Adult females showed more locomotor activity than adult males. Overall, prenatal ethanol exposure on G15 enhanced social anxiety in females, with these effects seen in adulthood only. © 2013 Elsevier B.V.


Varlinskaya E.I.,Binghamton University State University of New York | Vogt B.A.,Developmental Exposure Alcohol Research Center | Vogt B.A.,Cingulum Neurosciences Institute | Spear L.P.,Binghamton University State University of New York
Developmental Psychobiology | Year: 2013

The study assessed possible age differences in brain activation patterns to low dose ethanol (5g/kg intraperitoneally) and the influence of social context on this activation. Early adolescent or young adult male Sprague-Dawley rats were placed either alone or with an unfamiliar partner of the same age and sex following saline or ethanol administration. c-Fos protein immunoreactivity was used to index neuronal activation in 15 regions of interest. Ethanol had little effect on c-Fos activation. In adolescents, social context activated an "autonomic" network including the basolateral and central amygdala, bed nucleus of the stria terminalis, lateral hypothalamus, and lateral septum. In contrast, when adult rats were alone, activation was evident in a "reward" network that included the substantia nigra, nucleus accumbens, anterior cingulate and orbitofrontal cortices, lateral parabrachial nucleus, and locus coeruleus. © 2012 Wiley Periodicals, Inc.


Cohen O.S.,SUNY Upstate Medical University | Varlinskaya E.I.,Binghamton University State University of New York | Wilson C.A.,SUNY Upstate Medical University | Glatt S.J.,SUNY Upstate Medical University | And 2 more authors.
International Journal of Developmental Neuroscience | Year: 2013

Prenatal exposure to moderate doses of valproic acid (VPA) produces brainstem abnormalities, while higher doses of this teratogen elicit social deficits in the rat. In this pilot study, we examined effects of prenatal exposure to a moderate dose of VPA on behavior and on transcriptomic expression in three brain regions that mediate social behavior. Pregnant Long Evans rats were injected with 350. mg/kg VPA or saline on gestational day 13. A modified social interaction test was used to assess social behavior and social preference/avoidance during early and late adolescence and in adulthood. VPA-exposed animals demonstrated more social investigation and play fighting than control animals. Social investigation, play fighting, and contact behavior also differed as a function of age; the frequency of these behaviors increased in late adolescence. Social preference and locomotor activity under social circumstances were unaffected by treatment or age. Thus, a moderate prenatal dose of VPA produces behavioral alterations that are substantially different from the outcomes that occur following exposure to a higher dose. At adulthood, VPA-exposed subjects exhibited transcriptomic abnormalities in three brain regions: anterior amygdala, cerebellar vermis, and orbitofrontal cortex. A common feature among the proteins encoded by the dysregulated genes was their ability to be modulated by acetylation. Analysis of the expression of individual exons also revealed that genes involved in post-translational modification and epigenetic regulation had particular isoforms that were ubiquitously dysregulated across brain regions. The vulnerability of these genes to the epigenetic effects of VPA may highlight potential mechanisms by which prenatal VPA exposure alters the development of social behavior. © 2013 ISDN.

Loading Developmental Exposure Alcohol Research Center collaborators
Loading Developmental Exposure Alcohol Research Center collaborators