Developmental Biology Unit

Heidelberg, Germany

Developmental Biology Unit

Heidelberg, Germany
SEARCH FILTERS
Time filter
Source Type

Xiol J.,French National Center for Scientific Research | Spinelli P.,French National Center for Scientific Research | Laussmann M.A.,French National Center for Scientific Research | Laussmann M.A.,Cell Biology and Biophysics Unit | And 10 more authors.
Cell | Year: 2014

Germline-specific Piwi-interacting RNAs (piRNAs) protect animal genomes against transposons and are essential for fertility. piRNAs targeting active transposons are amplified by the ping-pong cycle, which couples Piwi endonucleolytic slicing of target RNAs to biogenesis of new piRNAs. Here, we describe the identification of a transient Amplifier complex that mediates biogenesis of secondary piRNAs in insect cells. Amplifier is nucleated by the DEAD box RNA helicase Vasa and contains the two Piwi proteins participating in the ping-pong loop, the Tudor protein Qin/Kumo and antisense piRNA guides. These components assemble on the surface of Vasa's helicase domain, which functions as an RNA clamp to anchor Amplifier onto transposon transcripts. We show that ATP-dependent RNP remodeling by Vasa facilitates transfer of 5′ sliced piRNA precursors between ping-pong partners, and loss of this activity causes sterility in Drosophila. Our results reveal the molecular basis for the small RNA amplification that confers adaptive immunity against transposons. © 2014 Elsevier Inc.


PubMed | Developmental Biology Unit, Cell Biology and Biophysics Unit, French National Center for Scientific Research, University of Heidelberg and CEA Grenoble
Type: Journal Article | Journal: Cell | Year: 2014

Germline-specific Piwi-interacting RNAs (piRNAs) protect animal genomes against transposons and are essential for fertility. piRNAs targeting active transposons are amplified by the ping-pong cycle, which couples Piwi endonucleolytic slicing of target RNAs to biogenesis of new piRNAs. Here, we describe the identification of a transient Amplifier complex that mediates biogenesis of secondary piRNAs in insect cells. Amplifier is nucleated by the DEAD box RNA helicase Vasa and contains the two Piwi proteins participating in the ping-pong loop, the Tudor protein Qin/Kumo and antisense piRNA guides. These components assemble on the surface of Vasas helicase domain, which functions as an RNA clamp to anchor Amplifier onto transposon transcripts. We show that ATP-dependent RNP remodeling by Vasa facilitates transfer of 5 sliced piRNA precursors between ping-pong partners, and loss of this activity causes sterility in Drosophila. Our results reveal the molecular basis for the small RNA amplification that confers adaptive immunity against transposons.


Montavon T.,Ecole Polytechnique Federale de Lausanne | Soshnikova N.,University of Geneva | Mascrez B.,University of Geneva | Joye E.,Ecole Polytechnique Federale de Lausanne | And 6 more authors.
Cell | Year: 2011

The evolution of digits was an essential step in the success of tetrapods. Among the key players, Hoxd genes are coordinately regulated in developing digits, where they help organize growth and patterns. We identified the distal regulatory sites associated with these genes by probing the three-dimensional architecture of this regulatory unit in developing limbs. This approach, combined with in vivo deletions of distinct regulatory regions, revealed that the active part of the gene cluster contacts several enhancer-like sequences. These elements are dispersed throughout the nearby gene desert, and each contributes either quantitatively or qualitatively to Hox gene transcription in presumptive digits. We propose that this genetic system, which we call a "regulatory archipelago," provides an inherent flexibility that may partly underlie the diversity in number and morphology of digits across tetrapods, as well as their resilience to drastic variations. © 2011 Elsevier Inc.


Cook C.E.,European Bioinformatics Institute | Chenevert J.,Paris-Sorbonne University | Larsson T.A.,Developmental Biology Unit | Larsson T.A.,Gothenburg University | And 3 more authors.
Molecular Biology of the Cell | Year: 2016

Until recently the set of model species used commonly for cell biology was limited to a small number of well-understood organisms, and developing a new model was prohibitively expensive or time-consuming. With the current rapid advances in technology, in particular low-cost high-throughput sequencing, it is now possible to develop molecular resources fairly rapidly. Wider sampling of biological diversity can only accelerate progress in addressing cellular mechanisms and shed light on how they are adapted to varied physiological contexts. Here we illustrate how historical knowledge and new technologies can reveal the potential of nonconventional organisms, and we suggest guidelines for selecting new experimental models. We also present examples of nonstandard marine metazoan model species that have made important contributions to our understanding of biological processes. © 2016 Cook et al.


Telley I.A.,Cell Biology and Biophysics Unit | Gaspar I.,Developmental Biology Unit | Ephrussi A.,Developmental Biology Unit | Surrey T.,Cell Biology and Biophysics Unit | Surrey T.,Cancer Research UK Research Institute
Nature Protocols | Year: 2013

Spindle assembly and chromosome segregation rely on a complex interplay of biochemical and mechanical processes. Analysis of this interplay requires precise manipulation of endogenous cellular components and high-resolution visualization. Here we provide a protocol for generating an extract from individual Drosophila syncytial embryos that supports repeated mitotic nuclear divisions with native characteristics. In contrast to the large-scale, metaphase-arrested Xenopus egg extract system, this assay enables the serial generation of extracts from single embryos of a genetically tractable organism, and each extract contains dozens of autonomously dividing nuclei that can be prepared and imaged within 60-90 min after embryo collection. We describe the microscopy setup and micropipette production that facilitate single-embryo manipulation, the preparation of embryos and the steps for making functional extracts that allow time-lapse microscopy of mitotic divisions ex vivo. The assay enables a unique combination of genetic, biochemical, optical and mechanical manipulations of the mitotic machinery. © 2013 Nature America, Inc. All rights reserved.


Rowe H.M.,Ecole Polytechnique Federale de Lausanne | Friedli M.,Ecole Polytechnique Federale de Lausanne | Offner S.,Ecole Polytechnique Federale de Lausanne | Verp S.,Ecole Polytechnique Federale de Lausanne | And 4 more authors.
Development (Cambridge) | Year: 2013

Endogenous retroviruses (ERVs) undergo de novo DNA methylation during the first few days of mammalian embryogenesis, although the factors that control the targeting of this process are largely unknown. We asked whether KAP1 (KRAB-associated protein 1) is involved in this mechanism because of its previously defined role in maintaining the silencing of ERVs through the histone methyltransferase ESET and histone H3 lysine 9 trimethylation. Here, we demonstrate that introduced ERV sequences are sufficient to direct rapid de novo methylation of a flanked promoter in embryonic stem (ES) cells. This mechanism requires the presence of an ERV sequence-recognizing KRAB zinc-finger protein (ZFP) and both KAP1 and ESET. Furthermore, this process can also take place on a strong cellular promoter and leads to methylation signatures that are subsequently maintained in vivo throughout embryogenesis. Finally, we show that methylation of ERVs residing in the genome is affected by knockout of KAP1 in early embryos. KRAB-ZFPs, KAP1 and ESET are thus likely to be responsible for the early embryonic instatement of stable epigenetic marks at ERVcontaining loci. © 2013. Published by The Company of Biologists Ltd.


Marinic M.,Developmental Biology Unit | Aktas T.,Developmental Biology Unit | Ruf S.,Developmental Biology Unit | Spitz F.,Developmental Biology Unit
Developmental Cell | Year: 2013

Fgf8 encodes a key signaling factor, and its precise regulation is essential for embryo patterning. Here, we identified the regulatory modules that control Fgf8 expression during mammalian embryogenesis. These enhancers are interspersed with unrelated genes along a large region of 220 kb; yet they act on Fgf8 only. Intriguingly, this region also contains additional genuine enhancer activities that are not transformed into gene expression. Using genomic engineering strategies, we showed that these multiple and distinct regulatory modules act as a coherent unit and influence genes depending on their position rather than on their promoter sequence. These findings highlight how the structure of a locus regulates the autonomous intrinsic activities of the regulatory elements it contains and contributes to their tissue and target specificities. We discuss the implications of such regulatory systems regarding the evolution of gene expression and the impact of human genomic structural variations. © 2013 Elsevier Inc.


PubMed | Developmental Biology Unit
Type: Journal Article | Journal: Developmental cell | Year: 2013

Fgf8 encodes a key signaling factor, and its precise regulation is essential for embryo patterning. Here, we identified the regulatory modules that control Fgf8 expression during mammalian embryogenesis. These enhancers are interspersed with unrelated genes along a large region of 220 kb; yet they act on Fgf8 only. Intriguingly, this region also contains additional genuine enhancer activities that are not transformed into gene expression. Using genomic engineering strategies, we showed that these multiple and distinct regulatory modules act as a coherent unit and influence genes depending on their position rather than on their promoter sequence. These findings highlight how the structure of a locus regulates the autonomous intrinsic activities of the regulatory elements it contains and contributes to their tissue and target specificities. We discuss the implications of such regulatory systems regarding the evolution of gene expression and the impact of human genomic structural variations.

Loading Developmental Biology Unit collaborators
Loading Developmental Biology Unit collaborators