Entity

Time filter

Source Type


Zouabi-Aloui B.,Tunis el Manar University | Adelana S.M.,Agriculture Research & Development Division | Gueddari M.,Tunis el Manar University
Environmental Monitoring and Assessment | Year: 2015

This study uses a multidisciplinary approach to simulate the spatial and temporal patterns of hydrodynamics and water quality in a thermally stratified reservoir in the southern side of the Mediterranean Sea in response to water withdrawal elevation using the 2D water quality and laterally averaged hydrodynamic model CE-QUAL-W2. The withdrawal elevation controls largely the transfer of heat and constituents in the dam in particular during thermal stratification. Fifteen scenarios of withdrawal elevation are possible. To identify the most effective scenarios, a hierarchical clustering technique was performed and only four scenarios were clustered. Deep withdrawals deepen the hypoxia, increase the thickness of the metalimnion, and weaken the stratification stability, which facilitate the vertical transfer of heat and dissolved oxygen mainly. Surface withdrawals, however, shrink the metalimnion and tend to strengthen the stratification, resulting in less transfer of matter from the epilimnion to the hypolimnion. Most of the bottom sediment is overlaid by the hypolimnion. The oxygen depletes significantly and waters become anoxic at a few meters depth. For all scenarios, the reservoir experiences a summer hypolimnetic anoxia, which lasts from 42 to 80 days and seems to decrease as withdrawal elevation increases. At the end of stratification, waters below the withdrawal elevation showed a noticeable release of iron, nutrients, and suspended sediments that increases with depth and near-bottom turbulence. Attention should be drawn to shallower withdrawals because they accumulate nutrients and silts continuously in the reservoir, which may deteriorate water quality. Based on these results, a withdrawal elevation rule is presented. This rule may be adjusted to optimize water withdrawal elevation for dams in the region with similar geometry. © 2015, Springer International Publishing Switzerland. Source

Discover hidden collaborations