Rheinbach, Germany
Rheinbach, Germany

Time filter

Source Type

Feys J.,Ghent University | Ghekiere B.,Ghent University | Lommens P.,Ghent University | Hopkins S.C.,University of Cambridge | And 7 more authors.
Materials Research Society Symposium Proceedings | Year: 2013

In this paper, we present ink-jet printing as an attractive alternative to lithography and etching methods for the development of multi-filamentary YBa2Cu3O7-δ coated conductors. Our research is mainly focused on the study of the influence of rheological parameters on the printability of water-based inks in order to produce superconducting patterns on SrTiO3 and CeO2-La 2Zr2O7-Ni5at%W substrates. An aqueous YBCO precursor ink with a total metal ion concentration of 1.1 mol/L with a viscosity of 6.79 mPa s and a surface tension of 67.9 mN/m is developed. Its printing behavior using several ink-jet printing devices is verified using a camera with strobed illumination to quantify droplet velocity and volume. After optimization of the deposition parameters, YBCO tracks with different dimensions could be printed on both types of substrates. Their shape and dimensions were determined using optical microscopy and non-contact profilometry, showing 100-200 nm thick and 40-200 μm wide tracks. Finally, resistivity measurements were performed on the widest tracks on SrTiO3 showing a clear drop in the resistivity starting from 88.6 K with a ΔTc of 1.4 K. © 2013 Materials Research Society.

News Article | February 17, 2017
Site: marketersmedia.com

Some of the key players in global superconductor market include American Superconductor, Evico GmbH, Hitachi, Ltd., Hyper Tech Research, Inc., Metal Oxide Technologies, Inc.PUNE, INDIA - February 17, 2017 /MarketersMedia/ — Global Superconductors Industry Global Superconductor market is accounted for $0.82 billion in 2015 and is expected to reach $2.71 billion by 2022 growing at a compound annual growth rate (CAGR) of 18.6%. Growing demand from medical industry for MRI, booming market for electric motors are the major factors propelling the market growth. In addition, increasing research & development activities, innovative technological developments are the other factors bolstering the market growth during the forecast period. On the other hand, fluctuating raw material prices is hindering the market growth. Try Sample Report @ https://www.wiseguyreports.com/sample-request/959992-superconductors-global-market-outlook-2016-2022 The widespread research involved in the development of high temperature superconductors (HTS) will also boost up the demand for superconductors in the power industry. The magnetic resonance imaging sector holds the leading share by consumer applications, and the electronic devices sector is anticipated to experience the fastest growth due to the rising applications of superconductors in this segment. Asia-Pacific is the primary regional market for this industry and is predictable to dominate in the future with the expected positive economic outlook in upcoming markets such as India, China, and Japan. Some of the key players in global superconductor market include American Superconductor, Evico GmbH, Hitachi, Ltd., Hyper Tech Research, Inc., Metal Oxide Technologies, Inc., Siemens AG, Sumitomo Electric Industries Ltd., Superconductor Technologies, Inc., Toshiba Corporation, Bruker Corporation, Ceraco Ceramic Coating Gmbh, Deutsche Nanoschicht Gmbh, Fujikura Ltd., and Furukawa Electric Co. Ltd. Products Covered: • High temperature superconducting materials • Low temperature superconducting materials Applications Covered: • Electronics • Medical • Research & Development • Other Applications For Detailed Reading Please visit WiseGuy Reports @ https://www.wiseguyreports.com/reports/959992-superconductors-global-market-outlook-2016-2022 Regions Covered: • North America o US o Canada o Mexico • Europe o Germany o France o Italy o UK o Spain o Rest of Europe • Asia Pacific o Japan o China o India o Australia o New Zealand o Rest of Asia Pacific • Rest of the World o Middle East o Brazil o Argentina o South Africa o Egypt What our report offers: - Market share assessments for the regional and country level segments - Market share analysis of the top industry players - Strategic recommendations for the new entrants - Market forecasts for a minimum of 7 years of all the mentioned segments, sub segments and the regional markets - Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations) - Strategic recommendations in key business segments based on the market estimations - Competitive landscaping mapping the key common trends - Company profiling with detailed strategies, financials, and recent developments - Supply chain trends mapping the latest technological advancements Buy now @ https://www.wiseguyreports.com/checkout?currency=one_user-USD&report_id=959992 Some Major Points from Table of content: 1 Executive Summary 2 Preface 2.1 Abstract 2.2 Stake Holders 2.3 Research Scope 2.4 Research Methodology 2.4.1 Data Mining 2.4.2 Data Analysis 2.4.3 Data Validation 2.4.4 Research Approach 2.5 Research Sources 2.5.1 Primary Research Sources 2.5.2 Secondary Research Sources 2.5.3 Assumptions 3 Market Trend Analysis 3.1 Introduction 3.2 Drivers 3.3 Restraints 3.4 Opportunities 3.5 Threats 3.6 Product Analysis Continued….. For more information or any query mail at sales@wiseguyreports.com About Us Wise Guy Reports is part of the Wise Guy Consultants Pvt. Ltd. and offers premium progressive statistical surveying, market research reports, analysis & forecast data for industries and governments around the globe. Wise Guy Reports understand how essential statistical surveying information is for your organization or association. Therefore, we have associated with the top publishers and research firms all specialized in specific domains, ensuring you will receive the most reliable and up to date research data available. Contact Us: Norah Trent +1 646 845 9349 / +44 208 133 9349 Follow on LinkedIn: https://www.linkedin.com/company/wise-guy-research-consultants-pvt-ltd-?trk=biz-companies-cym Contact Info:Name: NORAH TRENTOrganization: WISE GUY RESEARCH CONSULTANTS PVT LTDSource URL: http://marketersmedia.com/superconductors-global-market-outlook-2016-2022/170797For more information, please visit https://www.wiseguyreports.com/sample-request/959992-superconductors-global-market-outlook-2016-2022Source: MarketersMediaRelease ID: 170797

Bretos I.,RWTH Aachen | Schneller T.,RWTH Aachen | Falter M.,Deutsche Nanoschicht GmbH | Backer M.,Deutsche Nanoschicht GmbH | And 6 more authors.
Journal of Materials Chemistry C | Year: 2015

Superconducting YBa2Cu3O7-δ (YBCO) films with artificial BaZrO3 (BZO) nanodots were prepared using a chemical solution deposition method involving hybrid solutions composed of trifluoroacetate-based YBCO precursors and reverse micelle stabilized BZO nanoparticle dispersions. Microemulsion-mediated synthesis was used to obtain nano-sized (∼12 nm) and mono-dispersed BZO nanoparticles that preserve their features once introduced into the YBCO solution, as revealed by dynamic light scattering. Phase pure, epitaxial YBCO films with randomly oriented BZO nanodots distributed over their whole microstructure were grown from the hybrid solutions on (100) LaAlO3 substrates. The morphology of the YBCO-BZO nanocomposite films was strongly influenced by the amount of nanoparticles incorporated into the system, with contents ranging from 5 to 40 mol%. Scanning electron microscopy showed a high density of isolated second-phase defects consisting of BZO nanodots in the nanocomposite film with 10 mol% of BZO. Furthermore, a direct observation and quantitative analysis of lattice defects in the form of interfacial edge dislocations directly induced by the BZO nanodots was evidenced by transmission electron microscopy. The superconducting properties (77 K) of the YBCO films improved considerably by the presence of such nanodots, which seem to enhance the morphology of the sample and therefore the intergranular critical properties. The incorporation of preformed second-phase defects (here, BZO) during the growth of the superconducting phase is the main innovation of this novel approach for the all-solution based low-cost fabrication of long-length coated conductors. This journal is © The Royal Society of Chemistry.

Scheuerlein C.,CERN | Bjoerstad R.,CERN | Grether A.,CERN | Rikel M.O.,Nexans SuperConductors GmbH | And 5 more authors.
IEEE Transactions on Applied Superconductivity | Year: 2016

The electromechanical properties of different cuprate high-temperature superconductors, notably two ReBCO tapes, a reinforced and a nonreinforced Bi-2223 tape, and a Bi-2212 wire, have been studied. The axial tensile stress and strain, as well as the transverse compressive stress limits at which an irreversible critical current degradation occurs, are compared. The experimental setup has been integrated in a high-energy synchrotron beamline, and the self-field critical current and lattice parameter changes as a function of tensile stress and strain of a reinforced Bi-2223 tape have been measured simultaneously. Initially, the Bi-2223 filaments exhibit nearly linear elastic behavior up to the strain at which an irreversible degradation is observed. At 77 K, an axial Bi-2223 filament precompression of 0.09% in the composite tape and a Bi-2223 Poisson ratio ν=0.21 have been determined. © 2016 IEEE.

Kadar J.,CERN | Scheuerlein C.,CERN | Rikel M.O.,Nexans SuperConductors | Rikel M.O.,Deutsche Nanoschicht GmbH | And 2 more authors.
Superconductor Science and Technology | Year: 2016

Based on simultaneous in situ high energy synchrotron micro-tomography and x-ray diffraction (XRD) measurements we compare the microstructural changes and the formation of second phases and texture during the processing of Bi-2212 round wires with 15 μm filament diameter (multifilament) and 650 μm filament diameter (monofilament) fabricated using identical Bi-2212 precursor. The monofilament tomograms show in unprecedented detail how the distributed porosity agglomerates well before Bi-2212 melting decomposition to form lenticular voids that completely interrupt the filament connectivity along the wire axis. When the Bi-2212 phase completely melts connectivity in the axial wire direction is established via the changes in the void morphology from the lenticular voids to bubbles that remain when Bi-2212 crystallises out of the melt. By measuring the attenuation of the monochromatic x-ray beam, the associated Bi-2212 mass density changes have been monitored during the entire heat cycle. The XRD results reveal that the wire architecture can have a strong influence on the phase evolution during the melt processing heat treatment affecting the reversibility of Bi-2212 melting decomposition reaction. A strong Bi-2212 texturing is only achieved in the multifilament wire, while in the monofilament wire Bi-2212 crystallites grow with nearly random orientation. © 2016 IOP Publishing Ltd.

Agency: Cordis | Branch: FP7 | Program: CP-IP | Phase: NMP.2011.2.2-1 | Award Amount: 20.10M | Year: 2012

High current coated conductors (CCs) have high potential for developing electrical power applications and very high field magnets. The key issues for market success are low cost robust processes, high performance and a reliable manufacturing methodology of long length conductors. In recent years EU researchers and companies have made substantial progress towards these goals, based on vacuum (PLD) and chemical deposition (CSD) methods, towards nanostructuring of films. This provides a unique opportunity for Europe to integrate these advances in high performance conductors. The EUROTAPES project will address two broad objectives: 1/ the integration of the latest developments into simple conductor architectures for low and medium cost applications and to deliver \500m tapes. Defining of quality control tools and protocols to enhance the processing throughput and yield to achieve a pre-commercial cost target of 100 /kAm. 2/ Use of advanced methodologies to enhance performance (larger thickness and Ic, enhanced pinning for high fields, reduction of ac losses, increased mechanical strength). Demonstration of high critical currents (Ic>400A/cm-w, at 77K and self-field and Ic>1000A/cm-w at 5K and 15T) and pinning forces (Fp>100GN/m3 at 60 K). The CSD and PLD technologies will be combined to achieve optimized tape architectures, nanostructures and processes to address a variety of HTS applications at self-field, high and ultrahigh magnetic fields. Up to month 36, 3 types of conductors will be developed (RABiT, ABAD and round wire); at Mid Term 2 will be chosen for demonstration during the final 18 months. The consortium consists of 20 partners from 8 member states 6 universities (Cambridge, UK; Antwerp, B, U.A. Barcelona, ES, TU Cluj, RO, U. Ghent, BE and TU Wien, A), 5 institutes (CSIC-ICMAB, E, ENEA, I, IEE, SK, Inst. Neel-CNRS, F, and IFW, D), 1 technological center (LEITAT, ES) and 8 industrial companies (Bruker, D, Evico, D, Theva, D, Nexans GmbH, D, Percotech, D, Nexans SA, F, Lafarga Lacambra, ES and Oxolutia, ES).

Van Driessche I.,Ghent University | Feys J.,Ghent University | Hopkins S.C.,University of Cambridge | Lommens P.,Ghent University | And 8 more authors.
Superconductor Science and Technology | Year: 2012

This paper reports the successful application of ink-jet printing to the deposition of both continuous coatings and multi-filamentary structures of YBCO. Stable inks have been prepared using both the established TFA-MOD route and novel fluorine-free precursors with appropriate rheological properties for ink-jet printing. Continuous and well textured coatings with lengths exceeding 100m and a thickness of 0.5μm have been deposited by electromagnetic ink-jet printing from TFA precursors on LZO-buffered NiW substrates and samples have achieved a J c around 1.5MAcm -2 (self-field, 77K). On single crystal substrates, continuous coatings and multi-filamentary structures have been deposited using piezoelectric ink-jet printing both from TFA-and water-based precursors, achieving J c values up to 3MAcm -2. © 2012 IOP Publishing Ltd.

Agency: Cordis | Branch: H2020 | Program: MSCA-ITN-EID | Phase: MSCA-ITN-2016 | Award Amount: 499.78K | Year: 2017

The main research objective is the formulation of new types of multimetaloxide nanocrystals for incorporation as artificial pinning centers in nanocomposite thin films processed using chemical solution deposition. Superconducting coated conductors are chosen as the proof of concept. Innovative chemical deposition methods and the incorporation of preformed and inert multimetaloxide nanocrystals as pinning centres into the superconducting nanocomposite thin film are the innovative aspects compared to ongoing research. A successful realisation of the objectives of this EID proposal will need training of ESRs on different aspects ranging from chemical precursor design, stabilisation of nanocrystals in precursor solutions, continuous deposition of superconducting nanocomposite coatings and optimisation of the superconducting properties in alternating magnetic fields. The main objective of this programme is, in line with the EID scope, to enhance the career perspectives of early stage researchers (ESRs) by providing the unique opportunity to be exposed to research and training in both an academic as well as an industrial environment. This will be facilitated through the partnership between Ghent University and the industrial partner Deutsche Nanoschicht GmbH, bringing together two widely respected research partners, active in the field of inorganic nanomaterials synthesis and coating development for improved superconducting wires for energy applications. The involved partner organisations entered the project for specific added value in terms of industrial scaled synthesis of nanocomposite precursors (hte GmbH: high troughput designs; BASF SE: new formulations and flow chemistry) and Univ. of Turku (physical characterisation).

Hopkins S.C.,University of Cambridge | Joseph D.,University of Cambridge | Mitchell-Williams T.B.,University of Cambridge | Calleja A.,CSIC - Institute of Materials Science | And 13 more authors.
Journal of Physics: Conference Series | Year: 2014

Considerable progress has been made with the development of REBCO coated conductors in recent years, and high performance conductors are available commercially. For many applications, however, the cost remains prohibitive, and AC losses discourage their selection for higher frequency applications. Chemical solution deposition (CSD) methods are attractive for low-cost, scalable preparation of buffer and superconductor layers, and in many respects inkjet printing is the method of choice, permitting non-contact deposition with minimal materials wastage and excellent control of coating thickness. Highly textured coatings of YBCO and Gd-doped CeO2 have previously been reported on buffered metal substrates. Inkjet printing also introduces the possibility of patterning - directly depositing two and three dimensional structures without subtractive processing - offering a low-cost route to coated conductors with reduced AC losses. In this contribution, the inkjet deposition of superconducting YBCO tracks is reported on industrially relevant buffered metal substrates both by direct printing and an inverse patterning approach. In the latter approach, ceria tracks were printed reported, which are a candidate both for resistive filament spacers and buffer layers. TFA-based precursor solutions have been printed on SS/ABAD-YSZ/CeO2 and Ni-W/LZO/CeO2 RABiTS substrates, and the resulting multifilamentary samples characterised by microscopy and scanning Hall probe measurements. The prospects for future inkjet-printed low AC loss coated conductors are discussed, including control of interfilamentary resistivity and bridging, transposed filamentary structures and stabilisation material.

This report studies Alpha Magnetic Spectrometer in Global market, especially in North America, Europe, China, Japan, Korea and Taiwan, focuses on top manufacturers in global market, with production, price, revenue and market share for each manufacturer, covering  Bruker Corporation  Deutsche Nanoschicht GmbH  Grid Logic  Japan Superconductor Technology, Inc  Nexans SA  SH Copper Products Co. Ltd.  SuNam Co., Ltd.  SuperPower Inc.  Western Superconducting Technologies Co., Ltd  American Superconductor Corporation Market Segment by Regions, this report splits Global into several key Regions, with production, consumption, revenue, market share and growth rate of Alpha Magnetic Spectrometer in these regions, from 2011 to 2021 (forecast), like  North America  Europe  China  Japan  Korea  Taiwan Split by product type, with production, revenue, price, market share and growth rate of each type, can be divided into  Type I  Type II  Type III Split by application, this report focuses on consumption, market share and growth rate of Alpha Magnetic Spectrometer in each application, can be divided into  Application 1  Application 2  Application 3 1 Alpha Magnetic Spectrometer Market Overview  1.1 Product Overview and Scope of Alpha Magnetic Spectrometer  1.2 Alpha Magnetic Spectrometer Segment by Type  1.2.1 Global Production Market Share of Alpha Magnetic Spectrometer by Type in 2015  1.2.2 Type I  1.2.3 Type II  1.2.4 Type III  1.3 Alpha Magnetic Spectrometer Segment by Application  1.3.1 Alpha Magnetic Spectrometer Consumption Market Share by Application in 2015  1.3.2 Application 1  1.3.3 Application 2  1.3.4 Application 3  1.4 Alpha Magnetic Spectrometer Market by Region  1.4.1 North America Status and Prospect (2011-2021)  1.4.2 Europe Status and Prospect (2011-2021)  1.4.3 China Status and Prospect (2011-2021)  1.4.4 Japan Status and Prospect (2011-2021)  1.4.5 Korea Status and Prospect (2011-2021)  1.4.6 Taiwan Status and Prospect (2011-2021)  1.5 Global Market Size (Value) of Alpha Magnetic Spectrometer (2011-2021) 2 Global Alpha Magnetic Spectrometer Market Competition by Manufacturers  2.1 Global Alpha Magnetic Spectrometer Production and Share by Manufacturers (2015 and 2016)  2.2 Global Alpha Magnetic Spectrometer Revenue and Share by Manufacturers (2015 and 2016)  2.3 Global Alpha Magnetic Spectrometer Average Price by Manufacturers (2015 and 2016)  2.4 Manufacturers Alpha Magnetic Spectrometer Manufacturing Base Distribution, Sales Area and Product Type  2.5 Alpha Magnetic Spectrometer Market Competitive Situation and Trends  2.5.1 Alpha Magnetic Spectrometer Market Concentration Rate  2.5.2 Alpha Magnetic Spectrometer Market Share of Top 3 and Top 5 Manufacturers  2.5.3 Mergers & Acquisitions, Expansion 3 Global Alpha Magnetic Spectrometer Production, Revenue (Value) by Region (2011-2016)  3.1 Global Alpha Magnetic Spectrometer Production by Region (2011-2016)  3.2 Global Alpha Magnetic Spectrometer Production Market Share by Region (2011-2016)  3.3 Global Alpha Magnetic Spectrometer Revenue (Value) and Market Share by Region (2011-2016)  3.4 Global Alpha Magnetic Spectrometer Production, Revenue, Price and Gross Margin (2011-2016)  3.5 North America Alpha Magnetic Spectrometer Production, Revenue, Price and Gross Margin (2011-2016)  3.6 Europe Alpha Magnetic Spectrometer Production, Revenue, Price and Gross Margin (2011-2016)  3.7 China Alpha Magnetic Spectrometer Production, Revenue, Price and Gross Margin (2011-2016)  3.8 Japan Alpha Magnetic Spectrometer Production, Revenue, Price and Gross Margin (2011-2016)  3.9 Korea Alpha Magnetic Spectrometer Production, Revenue, Price and Gross Margin (2011-2016)  3.10 Taiwan Alpha Magnetic Spectrometer Production, Revenue, Price and Gross Margin (2011-2016) 4 Global Alpha Magnetic Spectrometer Supply (Production), Consumption, Export, Import by Regions (2011-2016)  4.1 Global Alpha Magnetic Spectrometer Consumption by Regions (2011-2016)  4.2 North America Alpha Magnetic Spectrometer Production, Consumption, Export, Import by Regions (2011-2016)  4.3 Europe Alpha Magnetic Spectrometer Production, Consumption, Export, Import by Regions (2011-2016)  4.4 China Alpha Magnetic Spectrometer Production, Consumption, Export, Import by Regions (2011-2016)  4.5 Japan Alpha Magnetic Spectrometer Production, Consumption, Export, Import by Regions (2011-2016)  4.6 Korea Alpha Magnetic Spectrometer Production, Consumption, Export, Import by Regions (2011-2016)  4.7 Taiwan Alpha Magnetic Spectrometer Production, Consumption, Export, Import by Regions (2011-2016) 7 Global Alpha Magnetic Spectrometer Manufacturers Profiles/Analysis  7.1 Bruker Corporation  7.1.1 Company Basic Information, Manufacturing Base and Its Competitors  7.1.2 Alpha Magnetic Spectrometer Product Type, Application and Specification Type I Type II  7.1.3 Bruker Corporation Alpha Magnetic Spectrometer Production, Revenue, Price and Gross Margin (2015 and 2016)  7.1.4 Main Business/Business Overview  7.2 Deutsche Nanoschicht GmbH  7.2.1 Company Basic Information, Manufacturing Base and Its Competitors  7.2.2 Alpha Magnetic Spectrometer Product Type, Application and Specification Type I Type II  7.2.3 Deutsche Nanoschicht GmbH Alpha Magnetic Spectrometer Production, Revenue, Price and Gross Margin (2015 and 2016)  7.2.4 Main Business/Business Overview  7.3 Grid Logic  7.3.1 Company Basic Information, Manufacturing Base and Its Competitors  7.3.2 Alpha Magnetic Spectrometer Product Type, Application and Specification Type I Type II  7.3.3 Grid Logic Alpha Magnetic Spectrometer Production, Revenue, Price and Gross Margin (2015 and 2016)  7.3.4 Main Business/Business Overview  7.4 Japan Superconductor Technology, Inc  7.4.1 Company Basic Information, Manufacturing Base and Its Competitors  7.4.2 Alpha Magnetic Spectrometer Product Type, Application and Specification Type I Type II

Loading Deutsche Nanoschicht GmbH collaborators
Loading Deutsche Nanoschicht GmbH collaborators