Defense Threat Reduction Agency

Fort Belvoir, VA, United States

Defense Threat Reduction Agency

Fort Belvoir, VA, United States

Time filter

Source Type

News Article | May 24, 2017
Site: www.eurekalert.org

A new study by a multi-national research team, including scientists from the U.S. Army Medical Research Institute of Infectious Diseases (USAMRIID), explains how Zika virus entered the United States last year and how it might re-enter the country this year. The study was published online today in the journal Nature. In July 2016, mosquito-borne Zika virus transmission was first reported in the continental U.S. and since then, hundreds of locally-acquired infections have been reported in Florida. Through the Laboratory Response Network, scientists at USAMRIID and the Florida Department of Health (FLDOH) joined forces to understand how the virus entered and was spreading in Florida. They did this through near real-time genomic sequencing. Viral genome sequences were released publically, as they were generated, to help other scientists studying the Zika virus disease outbreak, many of whom are co-authors of this study. According to Jason Ladner, Ph.D., a scientist at USAMRIID and one of the study's co-lead authors, by sequencing the virus's genome from human and mosquito infections, the team created a "family tree" showing how the virus spread through space and time. They discovered that the Zika virus disease outbreak in Florida was actually the result of multiple independent introduction events, the earliest of which occurred in the spring of 2016, several months before initial detection. "There is a reason why the first local Zika virus infections in the U.S. occurred in Florida," says Ladner. Florida is home to year-round populations of Aedes aegypti mosquitoes, the main species that transmits Zika virus to humans, and Miami is a significant travel hub, with more international air and sea traffic than any other city in the continental United States in 2016. However, the researchers show that sustained transmission of Zika virus in Florida is unlikely, making future outbreaks dependent on re-introductions of the virus. Their study also highlights the success of localized mosquito control efforts in preventing further spread of the virus in Florida. More broadly, the research illustrates the importance of establishing a robust capability for rapidly responding to emerging disease threats -- not just Zika virus. "Essentially, the sequencing approach that we used for this study is the first step and one of the most critical pieces of that capability," said Gustavo Palacios, Ph.D., a co-senior author on the paper and director of the Center for Genome Sciences at USAMRIID. Palacios and his colleagues had previously used genome sequencing technology to track the movement of Ebola virus in near real-time during the 2013-2016 outbreak in Western Africa. Their findings helped to shape outbreak response and disease control efforts on the ground. When Zika virus, which is carried by mosquitoes and has been linked to severe birth defects, entered the United States last year, his team put the same tools to work in an effort to track the virus's spread. According to Palacios, the recent outbreaks of Ebola and Zika virus disease underscore the need for a rapid and cohesive strategy to interrupt epidemics. Traditional research and development approaches rely on an academic model, with timelines that do not lend themselves to a prompt response. In addition, an integrated approach that allows for sharing of resources across agencies is critically important. USAMRIID and its partners have proposed to develop a platform called Accelerated Defense against Emerging Pathogen Threats (ADEPT) to provide a logical and effective plan for rapidly developing medical countermeasures. "The ADEPT platform was designed with a clear goal -- to quickly generate the information and medical countermeasures needed to stop an epidemic," Palacios said. "It provides a strong foundation with multiple parallel research and development efforts under one organizational structure." In addition, he said, ADEPT is not based on a specific type of medical countermeasure, but rather on the generation of information that will result in the development of the most appropriate product for any emerging disease outbreak. At the same time, it is vital that the information collected and generated by ADEPT is immediately available to the entire scientific community involved in the outbreak response. Consequently, ADEPT is completely open access and data will be shared in real time with the World Health Organization (WHO), the Coalition for Epidemic Preparedness Innovations (CEPI), and the affected nations. An independent scientific panel convened by the WHO evaluated and selected ADEPT as a platform that could positively impact biological preparedness under the WHO Research and Development Blueprint. The panel's report is available at http://www. . The Nature study was a collaboration of more than 60 scientists from nearly 20 institutions, including study co-leaders at the Scripps Research Institute, the Florida Department of Health, Florida Gulf Coast University, the University of Oxford, the Fred Hutchinson Cancer Research Center, and the Broad Institute of MIT and Harvard. It also included authors from the University of Miami, the University of Birmingham, Colorado State University, St. Michael's Hospital (Toronto), the University of Toronto, the University of Washington, Tulane University, Miami-Dade County Mosquito Control, the University of Florida, the University of Edinburgh and the National Institutes of Health. USAMRIID's mission is to provide leading edge medical capabilities to deter and defend against current and emerging biological threat agents. Research conducted at USAMRIID leads to medical solutions-vaccines, drugs, diagnostics, and information-that benefit both military personnel and civilians. The Institute plays a key role as the lead military medical research laboratory for the Defense Threat Reduction Agency's Joint Science and Technology Office for Chemical and Biological Defense. USAMRIID is a subordinate laboratory of the U.S. Army Medical Research and Materiel Command. For more information, visit http://www. . Reference: Genomic epidemiology reveals multiple introductions of Zika virus into the United States. N.D. Grubaugh et al. DOI: 10.1038/nature22400. Funding: ZIKV sequencing at USAMRIID was supported by the Defense Advanced Research Projects Agency.


News Article | April 17, 2017
Site: phys.org

Graphene is an extremely thin layer of carbon that is promising for optoelectronics, and researchers are trying to develop graphene-based photodetectors, devices that are critical for many technologies. However, typical photodetectors made of graphene have only a small area that is sensitive to light, limiting their performance. Now, researchers have solved the problem by combining graphene with a comparatively much larger silicon carbide substrate, creating graphene field-effect transistors, or GFETs, which can be activated by light, said Yong Chen, a Purdue University professor of physics and astronomy and electrical and computer engineering, and director of the Purdue Quantum Center. High-performance photodetectors might be useful for applications including high-speed communications and ultra-sensitive cameras for astrophysics, as well as sensing applications and wearable electronics. Arrays of the graphene-based transistors might bring high-resolution imaging and displays. "In most cameras you need lots of pixels," said Igor Jovanovic, a professor of nuclear engineering and radiological sciences at the University of Michigan. "However, our approach could make possible a very sensitive camera where you have relatively few pixels but still have high resolution." New findings are detailed in a research paper appearing this week in the journal Nature Nanotechnology. The work was performed by researchers at Purdue, the University of Michigan and Pennsylvania State University. "In typical graphene-based photodetectors demonstrated so far, the photoresponse only comes from specific locations near graphene over an area much smaller than the device size," Jovanovic said. "However, for many optoelectronic device applications, it is desirable to obtain photoresponse and positional sensitivity over a much larger area." New findings show the device is responsive to light even when the silicon carbide is illuminated at distances far from the graphene. The performance can be increased by as much as 10 times depending on which part of the material is illuminated. The new phototransistor also is "position-sensitive," meaning it can determine the location from which the light is coming, which is important for imaging applications and for detectors. "This is the first time anyone has demonstrated the use of a small piece of graphene on a large wafer of silicon carbide to achieve non-local photodetection, so the light doesn't have to hit the graphene itself," Chen said. "Here, the light can be incident on a much larger area, almost a millimeter, which has not been done before." A voltage is applied between the back side of the silicon carbide and the graphene, setting up an electric field in the silicon carbide. Incoming light generates "photo carriers" in the silicon carbide. "The semiconductor provides the media that interact with light," Jovanovic said. "When light comes in, part of the device becomes conducting and that changes the electric field acting on graphene." This change in the electric field also changes the conductivity of graphene itself, which is detected. The approach is called field-effect photo detection. The silicon carbide is "un-doped," unlike conventional semiconductors in silicon-based transistors. Being un-doped makes the material an insulator unless it is exposed to light, which temporarily causes it to become partially conductive, changing the electric field on the graphene. "This is a novelty of this work," Chen said. The research is related to work to develop new graphene-based sensors designed to detect radiation and was funded with a joint grant from the National Science Foundation and the U.S. Department of Homeland Security and another grant from the Defense Threat Reduction Agency. "This particular paper is about a sensor to detect photons, but the principles are the same for other types of radiation," Chen said. "We are using the sensitive graphene transistor to detect the changed electric field caused by photons, light in this case, interacting with a silicon carbide substrate." Light detectors can be used in devices called scintillators, which are used to detect radiation. Ionizing radiation creates brief flashes of light, which in scintillators are detected by devices called photo multiplier tubes, a roughly century-old technology. "So there is a lot of interest in developing advanced semiconductor-based devices that can achieve the same function," Jovanovic said. The paper was authored by former Purdue postdoctoral research associate Biddut K. Sarker; former Penn State graduate student Edward Cazalas; Purdue graduate student Ting-Fung Chung; former Purdue graduate student Isaac Childres; Jovanovic; and Chen. The researchers also explained their findings with a computational model. The transistors were fabricated at the Birck Nanotechnology Center in Purdue's Discovery Park. Future research will include work to explore applications such as scintillators, imaging technologies for astrophysics and sensors for high-energy radiation.


News Article | May 1, 2017
Site: www.eurekalert.org

The possibilities for the new field of two-dimensional, one-atomic-layer-thick materials, including but not limited to graphene, appear almost limitless. In new research, Penn State material scientists report two discoveries that will provide a simple and effective way to "stencil" high-quality 2D materials in precise locations and overcome a barrier to their use in next-generation electronics. In 2004, the discovery of a way to isolate a single atomic layer of carbon -- graphene --opened a new world of 2D materials with properties not necessarily found in the familiar 3D world. Among these materials are a large group of elements -- transition metals -- that fall in the middle of the periodic table. When atoms of certain transition metals, for instance molybdenum, are layered between two layers of atoms from the chalcogenide elements, such as sulfur or selenium, the result is a three-layer sandwich called a transition metal dichalcogenide. TMDs have created tremendous interest among materials scientists because of their potential for new types of electronics, optoelectronics and computation. "What we have focused on in this paper is the ability to make these materials over large areas of a substrate in precisely the places we want them," says Joshua Robinson, associate professor of materials science and engineering. "These materials are of interest for a variety of next-generation electronics, not necessarily to replace silicon, but to augment current technologies and ultimately to bring new chip functionality to silicon that we never had before." In order to integrate TMDs with silicon in transistors, chip companies will need to have a method to place the atoms precisely where they are needed. That method has not been available until now. In their 2D Materials paper, "Selective-area Growth and Controlled Substrate Coupling of Transition Metal Dichalcogenides," Robinson and his group demonstrate, for the first time, a simple method for making precise patterns of two-dimensional materials using techniques familiar to any nanotechnology lab. "It turns out the process is straight forward," Robinson explains. "We spin photoresist on the sample in the cleanroom, as if we are going to start making a device. It can be any of a number of polymers that are used in nanofabrication. We then expose it to ultraviolet light in the desired areas, and we develop it like a photograph. Where the polymer was exposed to light, it washes away, and we then clean the surface further with standard plasma-etching processes. The 2D materials will only grow in the areas that have been cleaned." A second simple discovery described in this work that could help advance the field of TMD research involves overcoming the strong effect a substrate has on the 2D materials grown on top of the substrate. In this case, molybdenum disulfide, a highly studied semiconductor TMD, was grown on a sapphire substrate using typical powder-based deposition techniques. This resulted in the properties of the sapphire/molybdenum disulfide interface controlling the desired properties of the molybdenum disulfide, making it unsuitable for device fabrication. "We needed to decouple the effects of the substrate on the 2D layer without transferring the layers off the sapphire," says Robinson, "and so we simply tried dunking the as-grown material into liquid nitrogen and pulling it out into air to 'crack' the interface. It turned out that was enough to separate the molybdenum disulfide from the sapphire and get closer to the intrinsic performance of the molybdenum disulfide." The process is gentle enough to weaken the bonds connecting the 2D material to the substrate without completely setting it free. The exact mechanism for loosening the bonds is still under investigation, because of the complexity of this "simple process," said Robinson. The two materials shrink at different rates, which could cause them to pop apart, but it could also be due to the bubbling of the liquid nitrogen as it turns into gas, or even contact with water vapor in the air that forms ice on the sample. "We're still working on understanding the exact mechanism, but we know that it works really well, at least with molybdenum disulfide," Robinson says. The three co-lead authors on the paper are doctoral students Brian Bersch and Yu-Chuan Lin, and research associate Sarah Eichfeld. Also contributing to this work are Robinson's doctoral student Keohao Zhang and his former doctoral. student, Ganesh Bhimanapati, now at Intel, undergraduate student Aleksander Piasecki, and Materials Research Institute staff scientist Michael Labella. Robinson is co-director of the Center for Atomically Thin Multifunctional Coatings and the Center for Two-Dimensional and Layered Materials, and director of user programs for the Penn State 2D Crystal Consortium, all part of the Penn State Materials Research Institute. The work was supported by the Center for Low Energy Systems Technology, one of six Semiconductor Research STARnet centers of the Semiconductor Research Corporation; the Defense Threat Reduction Agency; and the National Science Foundation.


News Article | May 2, 2017
Site: www.futurity.org

Two discoveries could provide a simple and effective way to “stencil” high-quality 2D materials in precise locations and overcome a barrier to their use in next-generation electronics. In 2004, the discovery of a way to isolate a single atomic layer of carbon—graphene —opened a new world of 2D materials with properties not necessarily found in the familiar 3D world. Among these materials are a large group of elements—transition metals—that fall in the middle of the periodic table. When atoms of certain transition metals, for instance molybdenum, are layered between two layers of atoms from the chalcogenide elements, such as sulfur or selenium, the result is a three-layer sandwich called a transition metal dichalcogenide. TMDs have created tremendous interest among materials scientists because of their potential for new types of electronics, optoelectronics and computation. “What we have focused on in this paper is the ability to make these materials over large areas of a substrate in precisely the places we want them,” says Joshua Robinson, associate professor of materials science and engineering at Penn State. “These materials are of interest for a variety of next-generation electronics, not necessarily to replace silicon, but to augment current technologies and ultimately to bring new chip functionality to silicon that we never had before.” In order to integrate TMDs with silicon in transistors, chip companies will need to have a method to place the atoms precisely where they are needed. That method has not been available until now. In their 2D Materials paper, Robinson and his group demonstrate, for the first time, a simple method for making precise patterns of two-dimensional materials using techniques familiar to any nanotechnology lab. “It turns out the process is straight forward,” Robinson explains. “We spin photoresist on the sample in the cleanroom, as if we are going to start making a device. It can be any of a number of polymers that are used in nanofabrication. We then expose it to ultraviolet light in the desired areas, and we develop it like a photograph. Where the polymer was exposed to light, it washes away, and we then clean the surface further with standard plasma-etching processes. The 2D materials will only grow in the areas that have been cleaned.” A second simple discovery described in this work that could help advance the field of TMD research involves overcoming the strong effect a substrate has on the 2D materials grown on top of the substrate. In this case, molybdenum disulfide, a highly studied semiconductor TMD, grew on a sapphire substrate using typical powder-based deposition techniques. This resulted in the properties of the sapphire/molybdenum disulfide interface controlling the desired properties of the molybdenum disulfide, making it unsuitable for device fabrication. “We needed to decouple the effects of the substrate on the 2D layer without transferring the layers off the sapphire,” says Robinson, “and so we simply tried dunking the as-grown material into liquid nitrogen and pulling it out into air to ‘crack’ the interface. It turned out that was enough to separate the molybdenum disulfide from the sapphire and get closer to the intrinsic performance of the molybdenum disulfide.” The process is gentle enough to weaken the bonds connecting the 2D material to the substrate without completely setting it free. The exact mechanism for loosening the bonds is still under investigation, because of the complexity of this “simple process,” says Robinson. The two materials shrink at different rates, which could cause them to pop apart, but it could also be due to the bubbling of the liquid nitrogen as it turns into gas, or even contact with water vapor in the air that forms ice on the sample. “We’re still working on understanding the exact mechanism, but we know that it works really well, at least with molybdenum disulfide,” Robinson says. Robinson is co-director of the Center for Atomically Thin Multifunctional Coatings and the Center for Two-Dimensional and Layered Materials, and director of user programs for the Penn State 2D Crystal Consortium, all part of the Penn State Materials Research Institute. Support for the work came from the Center for Low Energy Systems Technology, one of six Semiconductor Research STARnet centers of the Semiconductor Research Corporation; the Defense Threat Reduction Agency; and the National Science Foundation.


« Nous sommes ravis de ce vote de confiance. La reconnaissance de notre travail par la DTRA renforce la position de MeMed en tant que leader mondial des diagnostics basés sur une approche immunologique des maladies infectieuses », a déclaré Eran Eden, PhD, PDG de MeMed.  « Cet effort conjoint, en plus de notre collaboration grandissante avec d'autres parties prenantes internationales des secteurs industriel et gouvernemental, facilitera la disponibilité mondiale de nos tests visant à lutter contre la résistance aux antimicrobiens. » Au cours des huit dernières années, les cofondateurs de la société Kfir Oved, MD/PhD et Eran Eden, PhD ont collaboré avec des chercheurs et cliniciens de premier plan du monde entier pour étudier les changements qui se déroulent dans le système immunitaire humain lorsqu'il lutte contre des infections, dans le but de développer une signature immunitaire humaine qui reconnaisse de façon précise la différence entre les infections bactériennes et virales. ImmunoXpert™, la première génération de ce test novateur, est déjà utilisée et a été validée chez des milliers de patients*. La deuxième génération du test a impliqué le développement d'une nouvelle plateforme de point de service qui est facile d'utilisation et prend environ 15 minutes. « Cette collaboration va nous permettre d'accélérer l'achèvement de notre programme de plateforme de point de service », a commenté Kfir Oved, MD/PhD, directeur technique de MeMed. « En plus de permettre les mesures de notre test de distinction entre infections bactériennes et virales en seulement quelques minutes, cette nouvelle plateforme ouvre également la voie à une variété de mesures rapides de protéines multiplexes au point de service avec une précision de qualité de laboratoire, associée à de nombreuses applications. » « Le projet évaluera et étendra aussi notre menu de tests afin de détecter les infections précoces, même au stade présymptomatique d'une maladie, ce qui constitue actuellement un défi majeur pour contrôler les infections et les épidémies », a ajouté Tanya Gottlieb, PhD, vice-présidente des affaires scientifiques de MeMed. *Oved et al. Plos One, 2015 ; Eden et al. Journal of Infection, 2016 ; van Houten et el. Lancet Infectious Diseases, 2016. La Defense Threat Reduction Agency (DTRA) a été fondée en 1998 afin d'intégrer et concentrer les capacités du Département de la Défense (DoD) qui concernent la menace par des armes de destruction massive (ADM). La mission de la DTRA est de protéger les États-Unis et ses alliés contre les armes de destruction massive internationales et les menaces improvisées, en intégrant, synchronisant et fournissant une expertise, des technologies et des capacités. Pour en savoir plus sur la DTRA, rendez-vous sur le site http://www.dtra.mil. MeMed se consacre à améliorer la vie des patients à travers la recherche, le développement et la commercialisation de tests pionniers qui examinent l'état immunitaire du corps. Ses tests décodent les différentes réponses du système immunitaire face à différents états de santé et médicaux. La société se concentre sur la provision de solutions diagnostiques rapides, précises et exploitables pour les maladies infectieuses aigües et les troubles inflammatoires au sein de l'hôpital et de la communauté. Son test de première génération, ImmunoXpert™, a démontré la capacité de détecter avec précision si un patient est atteint d'une infection bactérienne ou virale, dans l'objectif de permettre aux médecins de prendre des décisions plus éclairées en matière de traitement antibiotique. ImmunoXpert est autorisé pour usage clinique dans l'Union européenne, en Suisse et en Israël. Il est actuellement en distribution pilote dans ces territoires avec un déploiement commercial plus important enclenché. Le test de deuxième génération de MeMed pour les test rapides (en seulement quelques minutes) au point de service est en cours de développement. Pour de plus amples informations, veuillez consulter le site http://www.me-med.com. Contact auprès des médias et développement des affaires : Asi Cohen-Dotan, PhD Tél. : +972-4-8500302 asi.cohen@me-med.com


« Nous sommes ravis de ce vote de confiance. La reconnaissance de notre travail par la DTRA renforce la position de MeMed en tant que leader mondial des diagnostics basés sur une approche immunologique des maladies infectieuses », a déclaré Eran Eden, PhD, PDG de MeMed.  « Cet effort conjoint, en plus de notre collaboration grandissante avec d'autres parties prenantes internationales des secteurs industriel et gouvernemental, facilitera la disponibilité mondiale de nos tests visant à lutter contre la résistance aux antimicrobiens. » Au cours des huit dernières années, les cofondateurs de la société Kfir Oved, MD/PhD et Eran Eden, PhD ont collaboré avec des chercheurs et cliniciens de premier plan du monde entier pour étudier les changements qui se déroulent dans le système immunitaire humain lorsqu'il lutte contre des infections, dans le but de développer une signature immunitaire humaine qui reconnaisse de façon précise la différence entre les infections bactériennes et virales. ImmunoXpert™, la première génération de ce test novateur, est déjà utilisée et a été validée chez des milliers de patients*. La deuxième génération du test a impliqué le développement d'une nouvelle plateforme de point de service qui est facile d'utilisation et prend environ 15 minutes. « Cette collaboration va nous permettre d'accélérer l'achèvement de notre programme de plateforme de point de service », a commenté Kfir Oved, MD/PhD, directeur technique de MeMed. « En plus de permettre les mesures de notre test de distinction entre infections bactériennes et virales en seulement quelques minutes, cette nouvelle plateforme ouvre également la voie à une variété de mesures rapides de protéines multiplexes au point de service avec une précision de qualité de laboratoire, associée à de nombreuses applications. » « Le projet évaluera et étendra aussi notre menu de tests afin de détecter les infections précoces, même au stade présymptomatique d'une maladie, ce qui constitue actuellement un défi majeur pour contrôler les infections et les épidémies », a ajouté Tanya Gottlieb, PhD, vice-présidente des affaires scientifiques de MeMed. *Oved et al. Plos One, 2015 ; Eden et al. Journal of Infection, 2016 ; van Houten et el. Lancet Infectious Diseases, 2016. La Defense Threat Reduction Agency (DTRA) a été fondée en 1998 afin d'intégrer et concentrer les capacités du Département de la Défense (DoD) qui concernent la menace par des armes de destruction massive (ADM). La mission de la DTRA est de protéger les États-Unis et ses alliés contre les armes de destruction massive internationales et les menaces improvisées, en intégrant, synchronisant et fournissant une expertise, des technologies et des capacités. Pour en savoir plus sur la DTRA, rendez-vous sur le site http://www.dtra.mil. MeMed se consacre à améliorer la vie des patients à travers la recherche, le développement et la commercialisation de tests pionniers qui examinent l'état immunitaire du corps. Ses tests décodent les différentes réponses du système immunitaire face à différents états de santé et médicaux. La société se concentre sur la provision de solutions diagnostiques rapides, précises et exploitables pour les maladies infectieuses aigües et les troubles inflammatoires au sein de l'hôpital et de la communauté. Son test de première génération, ImmunoXpert™, a démontré la capacité de détecter avec précision si un patient est atteint d'une infection bactérienne ou virale, dans l'objectif de permettre aux médecins de prendre des décisions plus éclairées en matière de traitement antibiotique. ImmunoXpert est autorisé pour usage clinique dans l'Union européenne, en Suisse et en Israël. Il est actuellement en distribution pilote dans ces territoires avec un déploiement commercial plus important enclenché. Le test de deuxième génération de MeMed pour les test rapides (en seulement quelques minutes) au point de service est en cours de développement. Pour de plus amples informations, veuillez consulter le site http://www.me-med.com. Contact auprès des médias et développement des affaires : Asi Cohen-Dotan, PhD Tél. : +972-4-8500302 asi.cohen@me-med.com


"Wir freuen uns über diesen Vertrauensbeweis. Die Anerkennung unserer Arbeit durch die DTRA stärkt die Positionierung von MeMed als Weltmarktführer auf dem Gebiet der immunbasierten Diagnostik von Infektionskrankheiten", bemerkte Dr. Eran Eden, CEO bei MeMed.  "Diese gemeinsame Anstrengung und unsere wachsende Zusammenarbeit mit anderen internationalen Interessenvertretern aus Industrie und Regierung wird die weltweite Verfügbarkeit unserer Tests zur Bekämpfung antimikrobieller Resistenzen ermöglichen." Während der letzten acht Jahre haben die Unternehmensmitgründer Dr. med. Kfir Oved und Dr. Eran Eden mit führenden Forschern und Klinikern aus der ganzen Welt zusammengearbeitet, um die Veränderungen zu untersuchen, die im menschlichen Immunsystem stattfinden, wenn es Infektionen bekämpft, und um eine menschliche Immunsignatur zu entwickeln, die den Unterschied zwischen bakteriellen und Virusinfektionen genau erkennt. ImmunoXpert™, das neuartige Testverfahren der ersten Generation, ist bereits in Gebrauch und hat sich an Tausenden von Patienten bewährt*. Das Testverfahren der zweiten Generation umfasste die Entwicklung einer neuen patientennahen Diagnoseplattform, die einfach zu handhaben ist und nur 15 Minuten Zeit in Anspruch nimmt. "Diese Zusammenarbeit wird uns ermöglichen, die Fertigstellung unserer patientennahen Diagnoseplattform zu beschleunigen", sagte Dr. med. Kfir Oved, CTO bei MeMed. "Die neue Plattform ermöglicht nicht nur innerhalb von Minuten Messungen unserer bakteriellen Tests im Vergleich zu viralen Tests, sondern ebnet darüber hinaus den Weg zu einer Vielzahl von Mehrfach-Proteinmessungen in Form von Schnelltests mit der Präzision einer Labordiagnostik für einen umfassenden Anwendungsbereich." "Das Projekt wird außerdem unser Testmenü zum frühen Erkennen von Infektionen bewerten und erweitern, sogar bereits in einem präsymptomatischen Krankheitsstadium, in dem noch keine Symptome vorliegen. Dies stellt zurzeit eine enorme Einschränkung unserer Fähigkeit dar, Infektionen und Epidemien unter Kontrolle zu halten", stellte Dr. Tanya Gottlieb, VP Scientific Affairs bei MeMed, fest. Die Defense Threat Reduction Agency (DTRA) wurde im Jahr 1998 als eine dem Verteidigungsministerium der Vereinigten Staaten angeschlossene Behörde gegründet und befasst sich mit der Verminderung der Bedrohung durch Massenvernichtungswaffen. Die Hauptaufgabe der DTRA besteht darin, die Bedrohung der Vereinigten Staaten und der restlichen Welt durch globale Massenvernichtungswaffen sowie improvisierte Bedrohungen einzudämmen. Dies geschieht durch Integration, Synchronisierung und die Bereitstellung von Fachwissen, Technologien und Fähigkeiten. Weitere Informationen zur DTRA erhalten Sie unter http://www.dtra.mil. MeMed engagiert sich für die Verbesserung der Lebensqualität von Patienten durch Forschung, Entwicklung und Vermarktung von bahnbrechenden Testverfahren, die den Immunstatus des Körpers überwachen. Die Tests von MeMed entschlüsseln die individuellen Reaktionen des Immunsystems auf unterschiedliche Gesundheits- und Erkrankungsstadien. Das Unternehmen konzentriert sich auf die Bereitstellung schneller, genauer und verfolgbarer Diagnostiklösungen für akute Infektionserkrankungen sowie Entzündungskrankheiten in Krankenhäusern und Gemeinden. ImmunoXpert™, das Testverfahren der ersten Generation des Unternehmens, hat die Fähigkeit bewiesen, genau zu erkennen, ob ein Patient an einer bakteriellen oder einer Viruserkrankung leidet. Dadurch werden Ärzte in die Lage versetzt, fundiertere Entscheidungen darüber zu treffen, ob eine Behandlung mit Antibiotika angezeigt ist. ImmunoXpert wurde für die klinische Verwendung in der Europäischen Union, der Schweiz und in Israel freigegeben. Zurzeit wird es in diesen Gebieten zu Proben verwendet. Eine weitere kommerzielle Verbreitung ist im Gang. Das Testverfahren der zweiten Generation von MeMed für schnelle Tests vor Ort (innerhalb von Minuten) befindet sich in der Entwicklung. Weitere Informationen erhalten Sie unter http://www.me-med.com.


"Wir freuen uns über diesen Vertrauensbeweis. Die Anerkennung unserer Arbeit durch die DTRA stärkt die Positionierung von MeMed als Weltmarktführer auf dem Gebiet der immunbasierten Diagnostik von Infektionskrankheiten", bemerkte Dr. Eran Eden, CEO bei MeMed.  "Diese gemeinsame Anstrengung und unsere wachsende Zusammenarbeit mit anderen internationalen Interessenvertretern aus Industrie und Regierung wird die weltweite Verfügbarkeit unserer Tests zur Bekämpfung antimikrobieller Resistenzen ermöglichen." Während der letzten acht Jahre haben die Unternehmensmitgründer Dr. med. Kfir Oved und Dr. Eran Eden mit führenden Forschern und Klinikern aus der ganzen Welt zusammengearbeitet, um die Veränderungen zu untersuchen, die im menschlichen Immunsystem stattfinden, wenn es Infektionen bekämpft, und um eine menschliche Immunsignatur zu entwickeln, die den Unterschied zwischen bakteriellen und Virusinfektionen genau erkennt. ImmunoXpert™, das neuartige Testverfahren der ersten Generation, ist bereits in Gebrauch und hat sich an Tausenden von Patienten bewährt*. Das Testverfahren der zweiten Generation umfasste die Entwicklung einer neuen patientennahen Diagnoseplattform, die einfach zu handhaben ist und nur 15 Minuten Zeit in Anspruch nimmt. "Diese Zusammenarbeit wird uns ermöglichen, die Fertigstellung unserer patientennahen Diagnoseplattform zu beschleunigen", sagte Dr. med. Kfir Oved, CTO bei MeMed. "Die neue Plattform ermöglicht nicht nur innerhalb von Minuten Messungen unserer bakteriellen Tests im Vergleich zu viralen Tests, sondern ebnet darüber hinaus den Weg zu einer Vielzahl von Mehrfach-Proteinmessungen in Form von Schnelltests mit der Präzision einer Labordiagnostik für einen umfassenden Anwendungsbereich." "Das Projekt wird außerdem unser Testmenü zum frühen Erkennen von Infektionen bewerten und erweitern, sogar bereits in einem präsymptomatischen Krankheitsstadium, in dem noch keine Symptome vorliegen. Dies stellt zurzeit eine enorme Einschränkung unserer Fähigkeit dar, Infektionen und Epidemien unter Kontrolle zu halten", stellte Dr. Tanya Gottlieb, VP Scientific Affairs bei MeMed, fest. Die Defense Threat Reduction Agency (DTRA) wurde im Jahr 1998 als eine dem Verteidigungsministerium der Vereinigten Staaten angeschlossene Behörde gegründet und befasst sich mit der Verminderung der Bedrohung durch Massenvernichtungswaffen. Die Hauptaufgabe der DTRA besteht darin, die Bedrohung der Vereinigten Staaten und der restlichen Welt durch globale Massenvernichtungswaffen sowie improvisierte Bedrohungen einzudämmen. Dies geschieht durch Integration, Synchronisierung und die Bereitstellung von Fachwissen, Technologien und Fähigkeiten. Weitere Informationen zur DTRA erhalten Sie unter http://www.dtra.mil. MeMed engagiert sich für die Verbesserung der Lebensqualität von Patienten durch Forschung, Entwicklung und Vermarktung von bahnbrechenden Testverfahren, die den Immunstatus des Körpers überwachen. Die Tests von MeMed entschlüsseln die individuellen Reaktionen des Immunsystems auf unterschiedliche Gesundheits- und Erkrankungsstadien. Das Unternehmen konzentriert sich auf die Bereitstellung schneller, genauer und verfolgbarer Diagnostiklösungen für akute Infektionserkrankungen sowie Entzündungskrankheiten in Krankenhäusern und Gemeinden. ImmunoXpert™, das Testverfahren der ersten Generation des Unternehmens, hat die Fähigkeit bewiesen, genau zu erkennen, ob ein Patient an einer bakteriellen oder einer Viruserkrankung leidet. Dadurch werden Ärzte in die Lage versetzt, fundiertere Entscheidungen darüber zu treffen, ob eine Behandlung mit Antibiotika angezeigt ist. ImmunoXpert wurde für die klinische Verwendung in der Europäischen Union, der Schweiz und in Israel freigegeben. Zurzeit wird es in diesen Gebieten zu Proben verwendet. Eine weitere kommerzielle Verbreitung ist im Gang. Das Testverfahren der zweiten Generation von MeMed für schnelle Tests vor Ort (innerhalb von Minuten) befindet sich in der Entwicklung. Weitere Informationen erhalten Sie unter http://www.me-med.com.


News Article | April 20, 2017
Site: www.eurekalert.org

ALBUQUERQUE, N.M. -- The work of Sandia National Laboratories at the intersection of biology and national security, including lifesaving efforts during the 2014 Ebola epidemic, has been recognized by the Department of Energy. On April 11, Dmitri Kusnezov, chief scientist and senior adviser to the secretary of energy, visited Sandia to honor nearly 60 Sandians for work to mitigate the effects of the Ebola epidemic and the work of the Technology Convergence Working Group. DOE established the working group in 2015 to provide technical insight and assess the nation's emerging biological technologies. The group is comprised of representatives from DOE headquarters and Sandia, Lawrence Livermore and Los Alamos national laboratories, including Jim Carney and Duane Lindner of Sandia. "The Technology Convergence Working Group will continue to assess national security implications of these emerging technologies and to help define and plan national preparedness measures," said Lindner, director for the Homeland Security program area. "Sandia is well positioned to play a leadership role in this arena and with the group." Reducing the amount of time Liberians who suspected they had Ebola spent waiting in large, open waiting rooms called Ebola treatment units was critical to controlling the outbreak. Sandia modeled and analyzed the West Africa nation's blood sample transport system from the treatment units to diagnostic labs and made recommendations to improve turnaround time. Sandia's solution minimized the amount of time that people were together in these open Ebola treatment units, so that somebody with a less serious illness wasn't infected by an Ebola victim, said Sandia infectious disease epidemiologist Monear Makvandi, who traveled to Liberia in 2014 to gather information for the models and was recognized during the ceremony. Sandia also was involved in modeling the potential need for quarantine, the effects of various changes to the global air transportation network, even the resilience of the U.S. hospital system to Ebola cases. In addition, Sandia continues basic scientific research to understand how Ebola was transmitted in West African clinics. "It is a great honor for Sandia's wide-ranging biological work to be recognized by the secretary of energy. I personally appreciate this recognition of our contributions to the nation," said Lindner. For the initial Liberia project, Sandia developed performance requirements for a new nationwide sample delivery system, which was adopted by the Liberian Ministry of Health and a nonprofit organization that transported samples by motorcycle, said Jen Gaudioso, senior manager of Sandia's International Biological and Chemical Threat Reduction. The project was sponsored by the Defense Threat Reduction Agency and United States Command Center for Combating Weapons of Mass Destruction. Sandia's work was important to help control the epidemic because patients received care faster. The sooner public health professionals identified Ebola carriers, the sooner they located people outside the clinic who had contact with a carrier and might have been infected, said Pat Finley, who led Sandia's modeling effort. Operations research analyst Jared Gearhart and his team developed algorithms to determine the optimal locations for labs and the best transportation routes, while accounting for such obstacles as a national curfew, poor infrastructure, lack of lab capacity and other factors. Finley and his team created a computer model of Ebola treatment in Liberia that aimed to reduce travel times of the samples from the Ebola treatment units to the testing labs, thus decreasing the time uninfected patients spend with Ebola sufferers. Leo Bynum, the geospatial analytics lead, and his team collected data and transformed it into maps, a task made more difficult by incomplete, anecdotal and, at times, incorrect data. Gaudioso and Makvandi travelled to Liberia in November 2014 to interview healthcare workers in the field, international agencies working in the country and Ministry of Health representatives to get the latest data for Sandia's model. The markets had just reopened and the curfew had lifted, but people were fearful of physical contact and would flinch if you came too near, Makvandi said. Prior to Sandia's project, samples were taken to labs that were thought to be the closest or just because health care workers knew someone there, with little thought to lab capacity, travel difficulties or other factors, Gaudioso said. In one case, Sandia learned of samples carried on foot to a waterway, then brought by canoe to a bridge that connects with a "highway," which is similar to a U.S. hiking trail. Sandia's analysis helped influence where new diagnostic labs could be located, including one in Greenville in southeastern Liberia. "That's been the area where we've had the most impact by helping Liberian stakeholders become aware of and overcome the challenges of providing lab results quickly in the remote region," Gearhart said. Sandia's modeling also showed the fastest options for transporting blood samples from patients, many in remote jungles, to diagnostic labs. Motorcycles are the vehicles of choice because they can move through traffic in more populated areas and are more easily pulled out when stuck on muddy roads, Makvandi said. Sandia was uniquely suited for the project due to its experience in global health security combined with its computer modeling capabilities. While in Liberia, Sandia's team reached back to the rest of the team to provide updated analyses, Gaudioso said. When the three attended meetings, the Sandia researchers communicated questions back to the modeling team in New Mexico. The time difference worked in their favor. While the travelers slept, their colleagues at Sandia answered the questions and incorporated changes into the model before work started in Liberia the next day. With so many organizations involved in the response, it's difficult to say exactly how Sandia's sample transport system affected wait times in the Ebola treatment units, but the team had anecdotal evidence that the project reduced the travel time from two days to a same-day or overnight diagnosis, Gaudioso said. Though the World Health Organization declared the most recent epidemic over in 2016, Gaudioso said Ebola and other diseases could always re-emerge. "The epidemic brought a lot of aid and attention to the public health systems in West Africa. Sandia hopes to help build on that momentum to provide a sustainable and resilient health infrastructure that is ready for future infectious disease outbreaks," she said. In the years since the epidemic, Sandia's expertise in laboratory safety and security has been requested for a number of other public health projects in West Africa.


New York, NY, May 01, 2017 --( The full report can be found here: Highlights From Report Include: Thunder Energy has already filed 2 grant applications with the Defense Threat Reduction Agency of the Department of Defense to develop nuclear weapon detection stations. The company has completed all the federal procurement requirements and is expected to get a $9 million grant once the application has been approved. The Santilli Telescope™ designed by Thunder Energy is the only existing telescope which can detect anti-matter light in deep space through its special concave lens. Thunder Energies was granted a $53,000 promissory initial funding from a New York investment banking group, the Power Up Group. The note will be fully converted into stock on December 14, 2017. The funds will be used for the development of nuclear weapon detection stations. Full disclosures pertaining to this report can be found at http://smallcapdigital.com/digital-marketing-services/equity-research-reports/. Thunder Energies has paid for this report as company sponsored research, which is meant to subsidize the high cost of creating the report and monitoring the security. About Thunder Energies Corporation: Thunder Energies Corporation is a development stage company, previously incorporated formally as Thunder Fusion Corporation. The company’s primary focus is its Division of Nuclear Equipment (DNE), which provides new technologies to detect smuggled nuclear weapons using a novel synthesis of the neutron from a hydrogen gas. The other two divisions are Combustion Equipment (DCE) and Optical Equipment (DOE), DCE is working on the novel HyperFurnace which achieves the full combustion of fossil fuels and DOE is engaged in the production and sale of 50 mm to 200 mm pairs of Galileo and Santilli telescopes, which are projected to generate millions in sales and support the company’s longer term goals. The technologies of the three divisions are protected by individual patent applications fully owned without royalties by Thunder Energies Corporation. More information on Thunder Energies can be found at http://thunder-energies.com/. About Small Cap Digital: Small Cap Digital is a digital marketing agency that specializes in utilizing the latest technologies to build organic, engaged audiences for nano, micro and small cap public companies. We create viral content for your product or service and build active digital marketing channels to strategically distribute and amplify this content. New York, NY, May 01, 2017 --( PR.com )-- Small Cap Digital, a leading digital marketing agency specializing in micro cap and small cap companies, has announced it has released an initiation report on Thunder Energies Corporation (OTC: TNRG).The full report can be found here: Thunder Energies Initiation Highlights From Report Include:Thunder Energy has already filed 2 grant applications with the Defense Threat Reduction Agency of the Department of Defense to develop nuclear weapon detection stations. The company has completed all the federal procurement requirements and is expected to get a $9 million grant once the application has been approved.The Santilli Telescope™ designed by Thunder Energy is the only existing telescope which can detect anti-matter light in deep space through its special concave lens.Thunder Energies was granted a $53,000 promissory initial funding from a New York investment banking group, the Power Up Group. The note will be fully converted into stock on December 14, 2017. The funds will be used for the development of nuclear weapon detection stations.Full disclosures pertaining to this report can be found at http://smallcapdigital.com/digital-marketing-services/equity-research-reports/. Thunder Energies has paid for this report as company sponsored research, which is meant to subsidize the high cost of creating the report and monitoring the security.About Thunder Energies Corporation:Thunder Energies Corporation is a development stage company, previously incorporated formally as Thunder Fusion Corporation. The company’s primary focus is its Division of Nuclear Equipment (DNE), which provides new technologies to detect smuggled nuclear weapons using a novel synthesis of the neutron from a hydrogen gas. The other two divisions are Combustion Equipment (DCE) and Optical Equipment (DOE), DCE is working on the novel HyperFurnace which achieves the full combustion of fossil fuels and DOE is engaged in the production and sale of 50 mm to 200 mm pairs of Galileo and Santilli telescopes, which are projected to generate millions in sales and support the company’s longer term goals. The technologies of the three divisions are protected by individual patent applications fully owned without royalties by Thunder Energies Corporation. More information on Thunder Energies can be found at http://thunder-energies.com/.About Small Cap Digital:Small Cap Digital is a digital marketing agency that specializes in utilizing the latest technologies to build organic, engaged audiences for nano, micro and small cap public companies. We create viral content for your product or service and build active digital marketing channels to strategically distribute and amplify this content. Click here to view the list of recent Press Releases from JGR Capital

Loading Defense Threat Reduction Agency collaborators
Loading Defense Threat Reduction Agency collaborators