Time filter

Source Type

Freiberg, Germany

Hou Z.,Clausthal University of Technology | Wundram L.,Clausthal University of Technology | Meyer R.,GDF SUEZ | Schmidt M.,GDF SUEZ | And 2 more authors.
Environmental Earth Sciences

This paper presents an innovative well abandonment concept developed for the long-term containment of CO 2 in depleted Rotliegend gas reservoirs. The new concept aims at amending the conventional standard well abandonment procedure, taking advantage of the natural creeping ability of the thick, homogeneous Zechstein rock salt formation located around 3,000 m in depth (Altmark area) and consists of four main sealing units: (1) a standard sealing element with cement from the reservoir to the impermeable caprock, (2) a salt plug created in the formerly reamed section of casing within the plastic Zechstein (Upper Permian) rock salt formation, (3) two bridge plugs at the bottom and top of the salt plug and (4) a standard sealing element with cement from the top bridge plug until the ground surface. This site-specific study mainly lays emphasis on the development and field testing of the naturally created salt plug, as a key component of the long-term wellbore sealing concept. Comprehensive numerical simulations conducted prior to and during the field test in 2010 and 2011 successfully predicted the evolution of convergence using downhole measurement data. Preliminary results comprise (1) proven convergence of the rock salt formation, (2) a successful coring and (3) restored integrity of Zechstein salt formation, as proven by the formation integrity test. Based on these results, the new long-term sealing concept has been successfully tested at the Altmark natural gas field and successful application of the concept on other sites with similar geological conditions is foreseen to be likely. © 2012 Springer-Verlag. Source

Kalies G.,University of Leipzig | Rockmann R.,DBI gGmbH | Tuma D.,BAM Federal Institute of Materials Research and Testing | Gapke J.,University of Leipzig
Applied Surface Science

Two different ordered mesoporous solids, a hexagonal SBA-15 silica sample and its inverse CMK-3 carbon structure were applied in liquid-phase adsorption. By means of the analysis of experimental data of a binary liquid model mixture with one polar and one non-polar component, the general way is outlined how to obtain essential and trustworthy solid information from liquid-phase adsorption. © 2010 Elsevier B.V. All rights reserved. Source

Lubenau U.,DBI gGmbH
International Gas Research Conference Proceedings

A presentation covers the advantages (e.g., low cost membranes) and disadvantages of polymeric membranes, (e.g., competitive sorption (BTEX, CO2; types of organic membranes (nanoporous, molecular sieving carbon membranes, carbon membranes); comparison of inorganic membrane-polymeric membrane; and use of inorganic membranes for liquids. This is an abstract of a paper presented at the International Gas Union Research Conference (Copenhagen, Denmark 9/17-19/2014). Source

Agency: Cordis | Branch: FP7 | Program: JTI-CP-FCH | Phase: SP1-JTI-FCH.2011.3.7 | Award Amount: 52.35M | Year: 2012

ene.field will deploy up to 1,000 residential fuel cell Combined Heat and Power (micro-CHP) installations, across 11 key Member States. It represents a step change in the volume of fuel cell micro-CHP (micro FC-CHP) deployment in Europe and a meaningful step towards commercialisation of the technology. The programme brings together 9 mature European micro FC-CHP manufacturers into a common analysis framework to deliver trials across all of the available fuel cell CHP technologies. Fuel cell micro-CHP trials will be installed and actively monitored in dwellings across the range of European domestic heating markets, dwelling types and climatic zones, which will lead to an invaluable dataset on domestic energy consumption and micro-CHP applicability across Europe. By learning the practicalities of installing and supporting a fleet of fuel cells with real customers, ene.field partners will take the final step before they can begin commercial roll-out. An increase in volume deployment for the manufacturers involved will stimulate cost reduction of the technology by enabling a move from hand-built products towards serial production and tooling. The ene.field project also brings together over 30 utilities, housing providers and municipalities to bring the products to market and explore different business models for micro-CHP deployment. The data produced by ene.field will be used to provide a fact base for micro FC-CHP, including a definitive environmental lifecycle assessment and cost assessment on a total cost of ownership basis. To inform clear national strategies on micro-CHP within Member States, ene.field will establish the macro-economics and CO2 savings of the technologies in their target markets and make recommendations on the most appropriate policy mechanisms to support the commercialisation of domestic micro-CHP across Europe. Finally ene.field will assess the socio-economic barriers to widespread deployment of micro-CHP and disseminate clear position papers and advice for policy makers to encourage further roll out.

Agency: Cordis | Branch: H2020 | Program: IA | Phase: LCE-09-2015 | Award Amount: 27.97M | Year: 2016

This proposal is an application to the EU programme Horizon 2020 and its topic Large scale energy storage (LCE-09-2015). The presented project STORE&GO will demonstrate three innovative Power to Gas storage concepts at locations in Germany, Switzerland and Italy in order to overcome technical, economic, social and legal barriers. The demonstration will pave the way for an integration of PtG storage into flexible energy supply and distribution systems with a high share of renewable energy. Using methanation processes as bridging technologies, it will demonstrate and investigate in which way these innovative PtG concepts will be able to solve the main problems of renewable energies: fluctuating production of renewable energies; consideration of renewables as suboptimal power grid infrastructure; expensive; missing storage solutions for renewable power at the local, national and European level. At the same time PtG concepts will contribute in maintaining natural gas or SNG with an existing huge European infrastructure and an already advantageous and continuously improving environmental footprint as an important primary/secondary energy carrier, which is nowadays in doubt due to geo-political reasons/conflicts. So, STORE&GO will show that new PtG concepts can bridge the gaps associated with renewable energies and security of energy supply. STORE&GO will rise the acceptance in the public for renewable energy technologies in the demonstration of bridging technologies at three living best practice locations in Europe.

Discover hidden collaborations