Saint Paul, MN, United States
Saint Paul, MN, United States

Time filter

Source Type

Dove E.S.,New York Law School | Dove E.S.,McGill University | Faraj S.A.,McGill University | Kolker E.,Seattle Childrens Hospital | And 4 more authors.
Genome Medicine | Year: 2012

Translation of pharmacogenomics to public health action is at the epicenter of the life sciences agenda. Post-genomics knowledge is simultaneously co-produced at multiple scales and locales by scientists, crowd-sourcing and biological citizens. The latter are entrepreneurial citizens who are autonomous, self-governing and increasingly conceptualizing themselves in biological terms, ostensibly taking responsibility for their own health, and engaging in patient advocacy and health activism. By studying these heterogeneous 'scientific cultures', we can locate innovative parameters of collective action to move pharmacogenomics to practice (personalized therapeutics). To this end, we reconceptualize knowledge-based innovation as a complex ecosystem comprising 'actors' and 'narrators'. For robust knowledge translation, we require a nested post-genomics technology governance system composed of first-order narrators (for example, social scientists, philosophers, bioethicists) situated at arm's length from innovation actors (for example, pharmacogenomics scientists). Yet, second-order narrators (for example, an independent and possibly crowd-funded think-tank of citizen scholars, marginalized groups and knowledge end-users) are crucial to prevent first-order narrators from gaining excessive power that can be misused in the course of steering innovations. To operate such 'self-calibrating' and nested innovation ecosystems, we introduce the concept of 'wiki-governance' to enable mutual and iterative learning among innovation actors and first- and second-order narrators.'[A] scientific expert is someone who knows more and more about less and less, until finally knowing (almost) everything about (almost) nothing.' 1. 'Ubuntu: I am because you are.' 2. © 2012 BioMed Central Ltd.


Roehl Jr. E.A.,Data Sciences International | Daamen R.C.,Data Sciences International | Cook J.B.,Data Sciences International
Journal - American Water Works Association | Year: 2013

Climate change and sea-level rise threaten the intakes of coastal utilities with seawater intrusion that will be of greater frequency, magnitude, and duration. This article describes a method that utilities can use to assess the risk to their intakes and details its application in two estuaries that supply freshwater to municipalities in Georgia and South Carolina. The method uses long-term weather and hydrologic data to develop an empirical model that represents the intrusion process near an intake. Data available from past droughts and storms provided sufficient variability to model the expected ranges of future weather and hydrologic conditions. The model's inputs can be varied using permutations of historical conditions or climate change forecasts to estimate potential impacts at an intake. The data and models are deployed in a spreadsheet-based decision support system that can be easily used by utility personnel.


Winters K.,Data Sciences International | Netscher S.,Data Sciences International
PLoS ONE | Year: 2016

Comparative statistical analyses often require data harmonization, yet the social sciences do not have clear operationalization frameworks that guide and homogenize variable coding decisions across disciplines. When faced with a need to harmonize variables researchers often look for guidance from various international studies that employ output harmonization, such as the Comparative Survey of Election Studies, which offer recoding structures for the same variable (e.g. marital status). More problematically there are no agreed documentation standards or journal requirements for reporting variable harmonization to facilitate a transparent replication process. We propose a conceptual and data-driven digital solution that creates harmonization documentation standards for publication and scholarly citation: QuickCharmStats 1.1. It is free and open-source software that allows for the organizing, documenting and publishing of data harmonization projects. QuickCharmStats starts at the conceptual level and its workflow ends with a variable recording syntax. It is therefore flexible enough to reflect a variety of theoretical justifications for variable harmonization. Using the socio-demographic variable marital status, we demonstrate how the CharmStats workflow collates metadata while being guided by the scientific standards of transparency and replication. It encourages researchers to publish their harmonization work by providing researchers who complete the peer review process a permanent identifier. Those who contribute original data harmonization work to their discipline can now be credited through citations. Finally, we propose peer-review standards for harmonization documentation, describe a route to online publishing, and provide a referencing format to cite harmonization projects. Although CharmStats products are designed for social scientists our adherence to the scientific method ensures our products can be used by researchers across the sciences. © 2016 Winters, Netscher. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.


Sarazan R.D.,Data Sciences International
Journal of Pharmacological and Toxicological Methods | Year: 2014

In the early days of in vivo nonclinical pressure measurement, most laboratories were required to have considerable technical/engineering expertise to configure and maintain pressure transducers, amplifiers, tape recorders, chart recorders, etc. Graduate students and postdoctoral fellows typically had some training in the requirements and limitations of the technology they used and were closely engaged in the collection and evaluation of data from their own experiments. More recently, pressure sensing telemetry and data acquisition/analysis systems are provided by vendors as turnkey systems, often resulting in a situation where users are less familiar with the technicalities of their operation. Also, investigators are now more likely to be absent and rely on technical staff for the collection of raw in vivo pressure data from their experiments than in the past. Depending on the goals of an experiment, an investigator may require the measurement of a variety of different pressure parameters, over varying periods of time. A basic understanding of the requirements and limitations that can affect the accuracy and precision of these parameters is important to ensure that the results and conclusions from an experiment are reliable. Factors to consider include the possibility of hydrostatic pressure effects from blood inside the vasculature of the animal, depending on the location of the sensor, as well as from fluid inside a fluid-filled catheter system; long-term stability (lack of drift) of a sensor over time, which can affect the interpretation of absolute pressure changes over a prolonged experiment; frequency response of the sensor and associated electronics; and the phase shift that occurs depending on location of the sensor in the vasculature or because of a fluid-filled catheter system. Each of these factors is discussed, and the particular requirements of frequency response as applied to the measurement of cardiac left ventricular pressure are emphasized. When these factors are understood, a pressure sensing and measurement system can be selected that is optimized for the experimental model being studied, thus eliminating errors or inaccurate results. © 2014 Published by Elsevier Inc.


Fritsche P.,Data Sciences International
2016 Pan Pacific Microelectronics Symposium, Pan Pacific 2016 | Year: 2016

Data Sciences International's (DSI) customers were experiencing an unacceptably high failure rate on one of our small (1.1 cc) implantable RF transmitters. With the help of Foresite, Inc., contamination on the circuit was identified to be one of the primary causes for the poor performance and reliability. Extensive research was conducted and no viable industry standard circuit washing system existed to meet the specific needs (small circuit size [< 0.4 in2], lower production volumes [∼50,000 circuits per year], thoroughly drying circuits and continuous flow [non-batch processing]). To fill this need, a new washing technology was developed. © 2016 SMTA.


Patent
Data Sciences International | Date: 2013-06-21

Inhalation measurement systems and methods enable, during inhalant exposure, substantially real-time respiratory measurements of a test subject using techniques that obtain measurements of respiration directly from that test subject, instead of from inhalation chamber parameter measurements. Direct test subject respiratory measurements may be, by way of example only, impedance measurements. These respiratory measurements taken directly from the test subject may be transmitted, wirelessly for example, for processing during the course of the test to a processing system to determine a cumulative volume of inhalant inspired by the test subject. From that, a cumulative amount of inhalant (or dose) inspired by the test subject may be determined during the course of the inhalation compound test. In addition, a calibration procedure may be performed before the inhalant exposure to provide correlation needed to translate chest and/or abdominal wall expansion measurements, made during the test, into lung volume measurements.


Patent
Data Sciences International | Date: 2011-04-15

A medical device is disclosed for implantation on an epicardial surface of the heart. The device has a transmural member providing optimal electrode locations for various therapies. The hemodynamically optimal therapy is guided by sensed left ventricular pressure and electrical activity. The device may be used alone or with a companion implanted cardiac rhythm management device.


Trademark
Data Sciences International | Date: 2014-06-10

Telemetry Devices for Medical and Veterinary Applications; Medical Apparatus and Instruments; Implant Devices for Veterinary Purposes, Namely, Telemetry Devices for Collection, Transmission, and Processing of Physiological Data Collected from Animals; Electrocardiographs for Veterinary Purposes; Medical Devices and Apparatus, Namely, Surgical Implants; Medical and Surgical Implants Made of Artificial Materials; Medical Instruments to Measure Blood Pressure, Cardiac Output and Other Physiological and Cardiovascular Parameters.


Trademark
Data Sciences International | Date: 2014-06-10

Computer Software and Computerized Analyzers for Collection and Processing of Physiological Data Collected from Animals and Instructional/User Manuals Sold Therewith as a Unit; Computer Programs for Acquisition, Analysis and Processing of Physiological Data in the Field of Medical Care for Animals and for Clinical Diagnosis and Research Purposes; Computer Software for Providing Notifications and Reports About Animal Vital Signs, Health and Condition; Transmitters, Receivers and Electronic Relay Stations for Sensing, Collecting, Transmitting, and Analyzing Physiological Data Collected from Animals, and Instructional/User Manuals Sold Therewith as a Unit; Signal Conditioners, Acquisition Interface Unit, Thermal Writer, Amplifiers, Output Box, Cable Kits, Probes, Transducers, Sensors, Electrodes and Accessories for the Acquisition, Recording, Storage and Display of Data, and Instructional/User Manuals Sold Therewith as a Unit; Computer Hardware and Software for Use in the Acquisition and Analysis of Physiological Data; Computer Software for Circulatory System, Cardiovascular System, Digestive System, Endocrine System, Immune System, Integumentary System, Lymphatic System, Muscular System, Nervous System, Reproductive System, Respiratory System, Skeletal System and Urinary System Analysis of Animals; Computer Software and Computerized Preclinical Laboratory Analyzers for Collection and Processing of Physiological Data Collected from Animals; Transmitters and Receivers for Animal Telemetry; Laboratory Equipment, Namely, Brain Activity Monitors, Blood Pressure Sensors, Force Transducers, Temperature Probes, Flow Meters, Pneumotachs, Respiratory Chambers, Dimension Gauges and Headstages for the Clinical Care of Animals; Prerecorded Video Tapes, CDs, and DVDs Featuring Instruction on and Information About Physiological Data, Animal Vital Signs, and Telemetry; Digital Materials, Namely, Downloadable Audio Files and Downloadable Video Files Featuring Instruction on and Information About Physiological Data, Animal Vital Signs, and Telemetry; Electronic Devices for Animal Locating and Tracking Programmed to Use Global Positioning Systems (GPS) and Cellular Communications.


Loading Data Sciences International collaborators
Loading Data Sciences International collaborators