Time filter

Source Type

Copenhagen, Denmark

Malatesta M.,Copenhagen University | Steinhauer C.,Copenhagen University | Mohammad F.,Copenhagen University | Pandey D.P.,Copenhagen University | And 2 more authors.
Cancer Research | Year: 2013

The Hedgehog (Hh) signaling pathway plays an important role in embryonic patterning and development of many tissues and organs as well as in maintaining and repairing mature tissues in adults. Uncontrolled activation of the Hh-Gli pathway has been implicated in developmental abnormalities as well as in several cancers, including brain tumors like medulloblastoma and glioblastoma. Inhibition of aberrant Hh-Gli signaling has, thus, emerged as an attractive approach for anticancer therapy; however, the mechanisms that mediate Hh-Gli signaling in vertebrates remain poorly understood. Here, we show that the histone acetyltransferase PCAF/KAT2B is an important factor of the Hh pathway. Specifically, we show that PCAF depletion impairs Hh activity and reduces expression of Hh target genes. Consequently, PCAF downregulation in medulloblastoma and glioblastoma cells leads to decreased proliferation and increased apoptosis. In addition, we found that PCAF interacts with GLI1, the downstream effector in the Hh-Gli pathway, and that PCAF or GLI1 loss reduces the levels of H3K9 acetylation on Hh target gene promoters. Finally, we observed that PCAF silencing reduces the tumor-forming potential of neural stem cells in vivo. In summary, our study identified the acetyltransferase PCAF as a positive cofactor of the Hh-Gli signaling pathway, leading us to propose PCAF as a candidate therapeutic target for the treatment of patients with medulloblastoma and glioblastoma. © 2013 AACR.

Jakobsen J.S.,Finsen Laboratory | Jakobsen J.S.,The BRIC | Jakobsen J.S.,Danish Stem Cell Center DanStem | Waage J.,Finsen Laboratory | And 12 more authors.
Genome Research | Year: 2013

Dynamic shifts in transcription factor binding are central to the regulation of biological processes by allowing rapid changes in gene transcription. However, very few genome-wide studies have examined how transcription factor occupancy is coordinated temporally in vivo in higher animals. Here, we quantified the genome-wide binding patterns of two key hepatocyte transcription factors, CEBPA and CEBPB (also known as C/EBPalpha and C/EBPbeta), at multiple time points during the highly dynamic process of liver regeneration elicited by partial hepatectomy in mouse. Combining these profiles with RNA polymerase II binding data, we find three temporal classes of transcription factor binding to be associated with distinct sets of regulated genes involved in the acute phase response, metabolic/homeostatic functions, or cell cycle progression. Moreover, we demonstrate a previously unrecognized early phase of homeostatic gene expression prior to S-phase entry. By analyzing the three classes of CEBP bound regions, we uncovered mutually exclusive sets of sequence motifs, suggesting temporal codes of CEBP recruitment by differential cobinding with other factors. These findings were validated by sequential ChIP experiments involving a panel of central transcription factors and/or by comparison to external ChIP-seq data. Our quantitative investigation not only provides in vivo evidence for the involvement of many new factors in liver regeneration but also points to similarities in the circuitries regulating self-renewal of differentiated cells. Taken together, our work emphasizes the power of global temporal analyses of transcription factor occupancy to elucidate mechanisms regulating dynamic biological processes in complex higher organisms. © 2013, Published by Cold Spring Harbor Laboratory Press.

Discover hidden collaborations