Danish Chinese Center for Proteases and Cancer

Chinese, Denmark

Danish Chinese Center for Proteases and Cancer

Chinese, Denmark
Time filter
Source Type

Kriegbaum M.C.,Innovation Center Denmark | Clausen O.P.F.,University of Oslo | Laerum O.D.,University of Bergen | Ploug M.,Innovation Center Denmark | Ploug M.,Danish Chinese Center for Proteases and Cancer
Journal of Histochemistry and Cytochemistry | Year: 2015

C4.4A and Haldisin belong to the Ly6/uPAR/α-neurotoxin protein domain family. They exhibit highly regulated expression profiles in normal epidermis, where they are confined to early (C4.4A) and late (Haldisin) squamous differentiation. We have now explored if dysregulated expressions occur in non-invasive and invasive skin lesions. In non-invasive lesions, their expression signatures were largely maintained as defined by that of normal epidermis. The scenario was, however, markedly different in the progression towards invasive squamous cell carcinomas. In its non-invasive stage (carcinoma in situ), a pronounced attenuation of C4.4A expression was observed, but upon transition to malignant invasive squamous cell carcinomas, the invasive fronts regained high expression of C4.4A. A similar progression was observed for the early stages of benign infiltrating keratoacanthomas. Interestingly, this transition was accompanied by a shift in the predominant association of C4.4A expression with CK1/10 in the normal epidermis to CK5/14 in the invasive lesions. In contrast, Haldisin expression maintained its confinement to the most-differentiated cells and was hardly expressed in the invasive lesions. Because this altered expression of C4.4A was seen in the invasive front of benign (keratoacanthomas) and malignant (squamous cell carcinomas) neoplasms, we propose that this transition of expression is primarily related to the invasive process. © The Author(s) 2014.

Hansen L.,University of Aarhus | Unmack Larsen E.K.,University of Aarhus | Nielsen E.H.,University of Aarhus | Iversen F.,University of Aarhus | And 9 more authors.
Nanoscale | Year: 2013

Ultrasmall superparamagnetic iron oxide (USPIO) nanoparticles are currently being used as a magnetic resonance imaging (MRI) contrast agent in vivo, mainly by their passive accumulation in tissues of interest. However, a higher specificity can ideally be achieved when the nanoparticles are targeted towards cell specific receptors and this may also facilitate specific drug delivery by an enhanced target-mediated endocytosis. We report efficient peptide-mediated targeting of magnetic nanoparticles to cells expressing the urokinase plasminogen activator receptor (uPAR), a surface biomarker for poor patient prognosis shared by several cancers including breast, colorectal, and gastric cancers. Conjugation of a uPAR specific targeting peptide onto polyethylene glycol (PEG) coated USPIO nanoparticles by click chemistry resulted in a five times higher uptake in vitro in a uPAR positive cell line compared to nanoparticles carrying a non-binding control peptide. In accordance with specific receptor-mediated recognition, a low uptake was observed in the presence of an excess of ATF, a natural ligand for uPAR. The uPAR specific magnetic nanoparticles can potentially provide a useful supplement for tumor patient management when combined with MRI and drug delivery. © 2013 The Royal Society of Chemistry.

Botkjaer K.A.,University of Aarhus | Botkjaer K.A.,Danish Chinese Center for Proteases and Cancer | Deryugina E.I.,Scripps Research Institute | Dupont D.M.,University of Aarhus | And 14 more authors.
Molecular Cancer Research | Year: 2012

Data accumulated over the latest two decades have established that the serine protease urokinase-type plasminogen activator (uPA) is a potential therapeutic target in cancer. When designing inhibitors of the proteolytic activity of serine proteases, obtaining sufficient specificity is problematic, because the topology of the proteases' active sites are highly similar. In an effort to generate highly specific uPA inhibitors with new inhibitory modalities, we isolated uPA-binding RNA aptamers by screening a library of 35 nucleotides long 2′-fluoro-pyrimidine RNA molecules using a version of human pro-uPA lacking the epidermal growth factor-like and kringle domains as bait. One pro-uPA-binding aptamer sequence, referred to as upanap-126, proved to be highly specific for human uPA. Upanap-126 delayed the proteolytic conversion of human pro-uPA to active uPA, but did not inhibit plasminogen activation catalyzed by two-chain uPA. The aptamer also inhibited the binding of pro-uPA to uPAR and the binding of vitronectin to the preformed pro-uPA/uPAR complex, both in cell-free systems and on cell surfaces. Furthermore, upanap-126 inhibited human tumor cell invasion in vitro in the Matrigel assay and in vivo in the chick embryo assay of cell escape from microtumors. Finally, upanap-126 significantly reduced the levels of tumor cell intravasation and dissemination in the chick embryo model of spontaneous metastasis. Together, our findings show that usage of upanap-126 represents a novel multifunctional mechanistic modality for inhibition of uPA-dependent processes involved in tumor cell spread. ©2012 AACR.

Jacobsen B.,Rigshospitalet and Copenhagen Biocenter | Jacobsen B.,Copenhagen University | Jacobsen B.,Danish Chinese Center for Proteases and Cancer | Muley T.,Translational Research Unit | And 13 more authors.
Journal of Thoracic Oncology | Year: 2013

INTRODUCTION: We have recently shown that the protein C4.4A is induced in early precursor lesions of pulmonary adenocarcinomas and squamous cell carcinomas. In the present study, we aimed at analyzing the impact of C4.4A on the survival of non-small cell lung cancer patients and determining whether its unexpected expression in adenocarcinomas could be attributed to a specific growth type (lepidic, acinar, papillary, micropapillary, solid). METHODS: Sections from the center and periphery of the primary tumor, as well as N2-positive lymph node metastases, were stained by immunohistochemistry for C4.4A and scored semi-quantitatively for intensity and frequency of positive tumor cells. RESULTS: C4.4A score (intensity × frequency) in the tumor center was a highly significant prognostic factor in adenocarcinomas (n = 88), both in univariate (p = 0.004; hazard ratio [95% confidence interval] = 1.44 [1.12-1.85]) and multivariate statistical analysis (p = 0.0005; hazard ratio = 1.65 [1.24-2.19]), demonstrating decreasing survival with increasing score. In contrast, C4.4A did not provide prognostic information in squamous cell carcinomas (n = 104). Pathological stage was significant in both groups. In the adenocarcinomas, C4.4A expression was clearly associated with, but a stronger prognostic factor than, solid growth. CONCLUSIONS: The present results substantiate the potential value of C4.4A as a prognostic marker in pulmonary adenocarcinomas seen earlier in a smaller, independent patient cohort. Importantly, we also show that C4.4A is a surrogate marker for adenocarcinoma solid growth. Recent data suggest that C4.4A is negatively regulated by the tumor suppressor liver kinase B1, which is inactivated in some adenocarcinomas, providing a possible link to the impact of C4.4A on the survival of these patients. Copyright © 2012.

Lin L.,Beth Israel Deaconess Medical Center | Gardsvoll H.,Rigshospitalet Section 3735 | Gardsvoll H.,Danish Chinese Center for Proteases and Cancer | Huai Q.,Beth Israel Deaconess Medical Center | And 5 more authors.
Journal of Biological Chemistry | Year: 2010

The high affinity interaction between the urokinase-type plasminogen activator (uPA) and its glycolipid-anchored receptor (uPAR) is decisive for cell surface-associated plasminogen activation. Because plasmin activity controls fibrinolysis in a variety of pathological conditions, including cancer and wound healing, several intervention studies have focused on targeting the uPA·uPAR interaction in vivo. Evaluations of such studies in xenotransplanted tumor models are, however, complicated by the pronounced species selectivity in this interaction. We now report the molecular basis underlying this difference by solving the crystal structure for the murine uPA·uPAR complex and demonstrate by extensive surface plasmon resonance studies that the kinetic rate constants for this interaction can be swapped completely between these orthologs by exchanging only two residues. This study not only discloses the structural basis required for a successful rational design of the species selectivity in the uPA·uPAR interaction, which is highly relevant for functional studies in mouse models, but it also suggests the possible development of general inhibitors that will target the uPA·uPAR interaction across species barriers. © 2010 by The American Society for Biochemistry and Molecular Biology, Inc.

Persson M.,Danish Chinese Center for Proteases and Cancer | Persson M.,Rigshospitalet | Persson M.,Copenhagen University | Persson M.,The BRIC | And 10 more authors.
Molecular Pharmaceutics | Year: 2014

The urokinase-type plasminogen activator receptor (uPAR) is implicated in cancer invasion and metastatic development in prostate cancer and provides therefore an attractive molecular target for both imaging and therapy. In this study, we provide the first in vivo data on an antimetastatic effect of uPAR radionuclide targeted therapy in such lesions and show the potential of uPAR positron emission tomography (PET) imaging for identifying small foci of metastatic cells in a mouse model of disseminating human prostate cancer. Two radiolabeled ligands were generated in high purity and specific activity: a uPAR-targeting probe (177Lu-DOTA-AE105) and a nonbinding control (177Lu-DOTA-AE105mut). Both uPAR flow cytometry and ELISA confirmed high expression levels of the target uPAR in PC-3M-LUC2.luc cells, and cell binding studies using 177Lu-DOTA-AE105 resulted in a specific binding with an IC50 value of 100 nM in a competitive binding experiment. In vivo, uPAR targeted radionuclide therapy significantly reduced the number of metastatic lesions in the disseminated metastatic prostate cancer model, when compared to vehicle and nontargeted 177Lu groups (p < 0.05) using bioluminescence imaging. Moreover, we found a significantly longer metastatic-free survival, with 65% of all mice without any disseminated metastatic lesions present at 65 days after first treatment dose (p = 0.047). In contrast, only 30% of all mice in the combined control groups treated with 177Lu-DOTA-AE105mut or vehicle were without metastatic lesions. No treatment-induced toxicity was observed during the study as evaluated by observing animal weight and H&E staining of kidney tissue (dose-limiting organ). Finally, uPAR PET imaging using 64Cu-DOTA-AE105 detected all small, disseminated metastatic foci when compared with bioluminescence imaging in a cohort of animals during the treatment study. In conclusion, uPAR targeted radiotherapy resulted in a significant reduction in the number of metastatic lesions in a human metastatic prostate cancer model. Furthermore, we have provided the first evidence of the potential for identification of small metastatic lesions using uPAR PET imaging in disseminated prostate cancer, illustrating the promising strategy of uPAR theranostics in prostate cancer. © 2014 American Chemical Society.

Kriegbaum M.C.,Rigshospitalet Section 3537 | Jacobsen B.,Rigshospitalet Section 3537 | Hald A.,Copenhagen University | Ploug M.,Rigshospitalet Section 3537 | Ploug M.,Danish Chinese Center for Proteases and Cancer
Journal of Histochemistry and Cytochemistry | Year: 2011

The glycosylphosphatidylinositol (GPI)-anchored C4.4A was originally identified as a metastasis-associated protein by differential screening of rat pancreatic carcinoma cell lines. C4.4A is accordingly expressed in various human carcinoma lesions. Although C4.4A is a structural homolog of the urokinase receptor (uPAR), which is implicated in cancer invasion and metastasis, no function has so far been assigned to C4.4A. To assist future studies on its function in both physiological and pathophysiological conditions, the present study provide a global survey on C4.4A expression in the normal mouse by a comprehensive immunohistochemical mapping. This task was accomplished by staining paraffin-embedded tissues with a specific rabbit polyclonal anti-C4.4A antibody. In the adult mouse, C4.4A was predominantly expressed in the suprabasal layers of the squamous epithelia of the oral cavity, esophagus, non-glandular portion of the rodent stomach, anus, vagina, cornea, and skin. This epithelial confinement was particularly evident from the abrupt termination of C4.4A expression at the squamo-columnar transition zones found at the ano-rectal and utero-vaginal junctions, for example. During mouse embryogenesis, C4.4A expression first appears in the developing squamous epithelium at embryonic day 13.5. This anatomical location of C4.4A is thus concordant with a possible functional role in early differentiation of stratified squamous epithelia. © The Author(s) 2011.

Persson M.,Rigshospitalet | Persson M.,Copenhagen University | Persson M.,Danish Chinese Center for Proteases and Cancer | Kjaer A.,Rigshospitalet | And 2 more authors.
Clinical Physiology and Functional Imaging | Year: 2013

Urokinase-type plasminogen activator receptor (uPAR) has been shown to be of special importance during cancer invasion and metastasis. However, currently, tissue samples are needed for measurement of uPAR expression limiting the potential as a clinical routine. Therefore, non-invasive methods are needed. In line with this, uPAR has recently been identified as a very promising imaging target candidate. uPAR consists of three domains attached to the cell membrane via a glycosylphosphatidylinositol (GPI) anchor and binds it natural ligand uPA with high affinity to localize plasminogen activation at the cell surface. Due to the importance of uPAR in cancer invasion and metastasis, a number of high-affinity ligands have been identified during the last decades. These ligands have recently been used as starting point for the development of a number of ligands for imaging of uPAR using various imaging modalities such as optical imaging, magnetic resonance imaging, single photon emission computer tomography (SPECT) and positron emission topography (PET). In this review, we will discuss recent advances in the development of uPAR-targeted imaging ligands according to imaging modality. In addition, we will discuss the potential future clinical application for uPAR imaging as a new imaging biomarker. © 2013 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.

Kriegbaum M.C.,Rigshospitalet | Persson M.,Rigshospitalet | Persson M.,Copenhagen University | Persson M.,Danish Chinese Center for Proteases and Cancer | And 7 more authors.
Current Drug Targets | Year: 2011

In the last two decades, the urokinase-type plasminogen activator receptor (uPAR) has been implicated in a number of human pathologies such as cancer, bacterial infections, and paroxysmal nocturnal hemoglobinuria. The primary function of this glycolipid-anchored receptor is to focalize uPA-mediated plasminogen activation at the cell surface, which is accomplished by its high-affinity interaction with the growth factor-like domain of uPA. Detailed insights into the molecular basis underlying the interactions between uPAR and its two bona fide ligands, uPA and vitronectin, have been obtained recently by X-ray crystallography and surface plasmon resonance studies. Importantly, these structural studies also define possible druggable target sites in uPAR for small molecules and provide guidelines for the development of reporter groups applicable for non-invasive molecular imaging of uPAR expression in vivo by positron emission tomography. In this review, we will discuss recent advances in our perception of the structure-function relationships of uPAR ligation and how these may assist translational research in preclinical intervention studies of uPAR function. © 2011 Bentham Science Publishers.

Rasch M.G.,Rigshospitalet Section 3735 | Lund I.K.,Rigshospitalet Section 3735 | Illemann M.,Rigshospitalet Section 3735 | Hoyer-Hansen G.,Rigshospitalet Section 3735 | And 2 more authors.
Protein Expression and Purification | Year: 2010

Matrix metalloproteinase-9 (MMP-9) is a 92-kDa soluble pro-enzyme implicated in pathological events including cancer invasion. It is therefore an attractive target for therapeutic intervention studies in mouse models. Development of inhibitors requires sufficient amounts of correctly folded murine MMP-9. Constructs encoding zymogens of full-length murine MMP-9 and a version lacking the O-glycosylated linker region and hemopexin domains were therefore generated and expressed in stably transfected Drosophila S2 insect cells. After 7 days of induction the expression levels of the full-length and truncated versions were 5 mg/l and 2 mg/l, respectively. The products were >95% pure after gelatin Sepharose chromatography and possessed proteolytic activity when analyzed by gelatin zymography. Using the purified full-length murine MMP-9 we raised polyclonal antibodies by immunizations of rabbits. These antibodies specifically identified pro-MMP-9 in incisional skin wound extracts from mice when used for Western blotting. Immunohistochemical analysis of paraffin embedded skin wounds from mice showed that MMP-9 protein was localized at the leading-edge keratinocytes in front of the migrating epidermal layer. No immunoreactivity was observed when the antibody was probed against skin wound material from MMP-9 deficient mice. In conclusion, we have generated and purified two proteolytically active recombinant murine MMP-9 protein constructs, which are critical reagents for future cancer drug discovery studies. © 2010 Elsevier Inc. All rights reserved.

Loading Danish Chinese Center for Proteases and Cancer collaborators
Loading Danish Chinese Center for Proteases and Cancer collaborators