Danell Consulting

Greenville, NC, United States

Danell Consulting

Greenville, NC, United States
Time filter
Source Type

Goesmann F.,Max Planck Institute for Solar System Research | Brinckerhoff W.B.,NASA | Raulin F.,University Paris Diderot | Goetz W.,Max Planck Institute for Solar System Research | And 25 more authors.
Astrobiology | Year: 2017

The Mars Organic Molecule Analyzer (MOMA) instrument onboard the ESA/Roscosmos ExoMars rover (to launch in July, 2020) will analyze volatile and refractory organic compounds in martian surface and subsurface sediments. In this study, we describe the design, current status of development, and analytical capabilities of the instrument. Data acquired on preliminary MOMA flight-like hardware and experimental setups are also presented, illustrating their contribution to the overall science return of the mission. Key Words: Mars-Mass spectrometry-Life detection-Planetary instrumentation. Astrobiology 17, 655-685. © Copyright 2017, Mary Ann Liebert, Inc. 2017.

Amsden J.J.,Duke University | Gehm M.E.,Duke University | Russell Z.E.,Ion Innovations | Chen E.X.,Duke University | And 9 more authors.
Annual Review of Analytical Chemistry | Year: 2017

The use of coded apertures in mass spectrometry can break the trade-off between throughput and resolution that has historically plagued conventional instruments. Despite their very early stage of development, coded apertures have been shown to increase throughput by more than one order of magnitude, with no loss in resolution in a simple 90-degree magnetic sector. This enhanced throughput can increase the signal level with respect to the underlying noise, thereby significantly improving sensitivity to low concentrations of analyte. Simultaneous resolution can be maintained, preventing any decrease in selectivity. Both one- and two-dimensional (2D) codes have been demonstrated. A 2D code can provide increased measurement diversity and therefore improved numerical conditioning of the mass spectrum that is reconstructed from the coded signal. This review discusses the state of development, the applications where coding is expected to provide added value, and the various instrument modifications necessary to implement coded apertures in mass spectrometers. © 2017 by Annual Reviews.

Clemis E.J.,University of Victoria | Smith D.S.,University of Victoria | Camenzind A.G.,University of Victoria | Danell R.M.,Danell Consulting | And 2 more authors.
Analytical Chemistry | Year: 2012

MALDI imaging allows the creation of a "molecular image" of a tissue slice. This image is reconstructed from the ion abundances in spectra obtained while rastering the laser over the tissue. These images can then be correlated with tissue histology to detect potential biomarkers of, for example, aberrant cell types. MALDI, however, is known to have problems with ion suppression, making it difficult to correlate measured ion abundance with concentration. It would be advantageous to have a method which could provide more accurate protein concentration measurements, particularly for screening applications or for precise comparisons between samples. In this paper, we report the development of a novel MALDI imaging method for the localization and accurate quantitation of proteins in tissues. This method involves optimization of in situ tryptic digestion, followed by reproducible and uniform deposition of an isotopically labeled standard peptide from a target protein onto the tissue, using an aerosol-generating device. Data is acquired by MALDI multiple reaction monitoring (MRM) mass spectrometry (MS), and accurate peptide quantitation is determined from the ratio of MRM transitions for the endogenous unlabeled proteolytic peptides to the corresponding transitions from the applied isotopically labeled standard peptides. In a parallel experiment, the quantity of the labeled peptide applied to the tissue was determined using a standard curve generated from MALDI time-of-flight (TOF) MS data. This external calibration curve was then used to determine the quantity of endogenous peptide in a given area. All standard curves generate by this method had coefficients of determination greater than 0.97. These proof-of-concept experiments using MALDI MRM-based imaging show the feasibility for the precise and accurate quantitation of tissue protein concentrations over 2 orders of magnitude, while maintaining the spatial localization information for the proteins. © 2012 American Chemical Society.

Russell Z.E.,Duke University | Chen E.X.,Duke University | Amsden J.J.,Duke University | Wolter S.D.,Duke University | And 7 more authors.
Journal of the American Society for Mass Spectrometry | Year: 2015

In mass spectrometer design, there has been a historic belief that there exists a fundamental trade-off between instrument size, throughput, and resolution. When miniaturizing a traditional system, performance loss in either resolution or throughput would be expected. However, in optical spectroscopy, both one-dimensional (1D) and two-dimensional (2D) aperture coding have been used for many years to break a similar trade-off. To provide a viable path to miniaturization for harsh environment field applications, we are investigating similar concepts in sector mass spectrometry. Recently, we demonstrated the viability of 1D aperture coding and here we provide a first investigation of 2D coding. In coded optical spectroscopy, 2D coding is preferred because of increased measurement diversity for improved conditioning and robustness of the result. To investigate its viability in mass spectrometry, analytes of argon, acetone, and ethanol were detected using a custom 90-degree magnetic sector mass spectrometer incorporating 2D coded apertures. We developed a mathematical forward model and reconstruction algorithm to successfully reconstruct the mass spectra from the 2D spatially coded ion positions. This 2D coding enabled a 3.5× throughput increase with minimal decrease in resolution. Several challenges were overcome in the mass spectrometer design to enable this coding, including the need for large uniform ion flux, a wide gap magnetic sector that maintains field uniformity, and a high resolution 2D detection system for ion imaging. Furthermore, micro-fabricated 2D coded apertures incorporating support structures were developed to provide a viable design that allowed ion transmission through the open elements of the code. © 2015 American Society for Mass Spectrometry.

Chen E.X.,Duke University | Russell Z.E.,Duke University | Amsden J.J.,Duke University | Wolter S.D.,Duke University | And 7 more authors.
Journal of the American Society for Mass Spectrometry | Year: 2015

Miniaturizing instruments for spectroscopic applications requires the designer to confront a tradeoff between instrument resolution and instrument throughput [and associated signal-to-background-ratio (SBR)]. This work demonstrates a solution to this tradeoff in sector mass spectrometry by the first application of one-dimensional (1D) spatially coded apertures, similar to those previously demonstrated in optics. This was accomplished by replacing the input slit of a simple 90° magnetic sector mass spectrometer with a specifically designed coded aperture, deriving the corresponding forward mathematical model and spectral reconstruction algorithm, and then utilizing the resulting system to measure and reconstruct the mass spectra of argon, acetone, and ethanol. We expect the application of coded apertures to sector instrument designs will lead to miniature mass spectrometers that maintain the high performance of larger instruments, enabling field detection of trace chemicals and point-of-use mass spectrometry. [Figure not available: see fulltext.] © 2015 American Society for Mass Spectrometry.

Myer M.J.,East Carolina University | Danell R.M.,Danell Consulting | Danell A.S.,East Carolina University
Review of Scientific Instruments | Year: 2010

A continuously operated dual polarity dual nanoelectrospray ionization source has been constructed and tested. A commercial quadrupole ion trap mass spectrometer was modified to accumulate and trap ions of opposite charge. All changes to the commercial three-dimensional quadrupole ion trap have been made external to the instrument outside of the vacuum system. Few hardware modifications were required because the two emitters send ion beams through the same transmission guides. Computer controlled source voltage polarities are switched quickly and efficiently to transmit one of two continuously generated ion beams. With customized software, this design has proved simple to implement and to operate. © 2010 American Institute of Physics.

Chen E.X.,Duke University | Gehm M.,Duke University | Danell R.,Danell Consulting | Wells M.,FLIR Systems Inc. | And 2 more authors.
Journal of the American Society for Mass Spectrometry | Year: 2014

(Graph Presented) Conventionally, quadrupole ion trap mass spectrometers eject ions of different mass-to-charge ratio (m/z) in a sequential fashion by performing a scan of the rf trapping voltage amplitude. Due to the inherent sparsity of most mass spectra, the detector measures no signal for much of the scan time. By exploiting this sparsity property, we propose a new compressive and multiplexed mass analysis approach - multi Resonant Frequency Excitation (mRFE) ejection. This new approach divides the mass spectrum into several mass subranges and detects all the subrange spectra in parallel for increased mass analysis speed. Mathematical estimation of standard mass spectrum is demonstrated while statistical classification on the parallel measurements remains viable because of the sparse nature of the mass spectra. This method can reduce mass analysis time by a factor of 3-6 and increase system duty cycle by 2x. The combination of reduced analysis time and accurate compound classification is demonstrated in a commercial quadrupole ion trap (QIT) system. © 2014 American Society for Mass Spectrometry.

Loading Danell Consulting collaborators
Loading Danell Consulting collaborators