Time filter

Source Type

Castaic, CA, United States

Gillespie D.T.,Dan T Gillespie Consulting | Petzold L.R.,University of California at Santa Barbara | Seitaridou E.,Emory University
Journal of Chemical Physics | Year: 2014

The chemical master equation (CME) and the mathematically equivalent stochastic simulation algorithm (SSA) assume that the reactant molecules in a chemically reacting system are "dilute"and "well- mixed"throughout the containing volume. Here we clarify what those two conditions mean, and we show why their satisfaction is necessary in order for bimolecular reactions to physically occur in the manner assumed by the CME and the SSA. We prove that these conditions are closely connected, in that a system will stay well-mixed if and only if it is dilute. We explore the implications of these validity conditions for the reaction-diffusion (or spatially inhomogeneous) extensions of the CME and the SSA to systems whose containing volumes are not necessarily well-mixed, but can be partitioned into cubical subvolumes (voxels) that are. We show that the validity conditions, together with an additional condition that is needed to ensure the physical validity of the diffusion-induced jump probability rates of molecules between voxels, require the voxel edge length to have a strictly positive lower bound. We prove that if the voxel edge length is steadily decreased in a way that respects that lower bound, the average rate at which bimolecular reactions occur in the reaction-diffusion CME and SSA will remain constant, while the average rate of diffusive transfer reactions will increase as the inverse square of the voxel edge length. We conclude that even though the reaction-diffusion CME and SSA are inherently approximate, and cannot be made exact by shrinking the voxel size to zero, they should nevertheless be useful in many practical situations. © 2014 AIP Publishing LLC.

Wallace E.W.J.,University of Chicago | Wallace E.W.J.,Harvard University | Gillespie D.T.,Dan T Gillespie Consulting | Sanft K.R.,University of California at Santa Barbara | Petzold L.R.,University of California at Santa Barbara
IET Systems Biology | Year: 2012

The linear noise approximation (LNA) is a way of approximating the stochastic time evolution of a well-stirred chemically reacting system. It can be obtained either as the lowest order correction to the deterministic chemical reaction rate equation (RRE) in van Kampen's system-size expansion of the chemical master equation (CME), or by linearising the two-term-truncated chemical Kramers-Moyal equation. However, neither of those derivations sheds much light on the validity of the LNA. The problematic character of the system-size expansion of the CME for some chemical systems, the arbitrariness of truncating the chemical Kramers-Moyal equation at two terms, the sometimes poor agreement of the LNA with the solution of the CME, have all raised concerns about the validity usefulness of the LNA. Here, the authors argue that these concerns can be resolved by viewing the LNA as an approximation of the chemical Langevin equation (CLE). This view is already implicit in Gardiner's derivation of the LNA from the truncated Kramers-Moyal equation, as that equation is mathematically equivalent to the CLE. However, the CLE can be more convincingly derived in a way that does not involve either the truncated Kramers-Moyal equation or the system-size expansion. This derivation shows that the CLE will be valid, at least for a limited span of time, for any system that is sufficiently close to the thermodynamic (large-system) limit. The relatively easy derivation of the LNA from the CLE shows that the LNA shares the CLE's conditions of validity, it also suggests that what the LNA really gives us is a description of the initial departure of the CLE from the RRE as we back away from the thermodynamic limit to a large but finite system. The authors show that this approach to the LNA simplifies its derivation, clarifies its limitations, affords an easier path to its solution. © 2012 The Institution of Engineering Technology.

Roh M.K.,University of California at Santa Barbara | Gillespie D.T.,Dan T Gillespie Consulting | Petzold L.R.,University of California at Santa Barbara
Journal of Chemical Physics | Year: 2010

The weighted stochastic simulation algorithm (wSSA) was developed by Kuwahara and Mura [J. Chem. Phys. 129, 165101 (2008)] to efficiently estimate the probabilities of rare events in discrete stochastic systems. The wSSA uses importance sampling to enhance the statistical accuracy in the estimation of the probability of the rare event. The original algorithm biases the reaction selection step with a fixed importance sampling parameter. In this paper, we introduce a novel method where the biasing parameter is state-dependent. The new method features improved accuracy, efficiency, and robustness. © 2010 American Institute of Physics.

Sanft K.R.,University of California at Santa Barbara | Gillespie D.T.,Dan T Gillespie Consulting | Petzold L.R.,University of California at Santa Barbara
IET Systems Biology | Year: 2011

Michaelis-Menten kinetics are commonly used to represent enzyme-catalysed reactions in biochemical models. The Michaelis-Menten approximation has been thoroughly studied in the context of traditional differential equation models. The presence of small concentrations in biochemical systems, however, encourages the conversion to a discrete stochastic representation. It is shown that the Michaelis-Menten approximation is applicable in discrete stochastic models and that the validity conditions are the same as in the deterministic regime. The authors then compare the Michaelis-Menten approximation to a procedure called the slow-scale stochastic simulation algorithm (ssSSA). The theory underlying the ssSSA implies a formula that seems in some cases to be different from the well-known Michaelis-Menten formula. Here those differences are examined, and some special cases of the stochastic formulas are confirmed using a first-passage time analysis. This exercise serves to place the conventional Michaelis-Menten formula in a broader rigorous theoretical framework. © The Institution of Engineering and Technology.

Roh M.K.,University of California at Santa Barbara | Daigle Jr. B.J.,University of California at Santa Barbara | Gillespie D.T.,Dan T Gillespie Consulting | Petzold L.R.,University of California at Santa Barbara
Journal of Chemical Physics | Year: 2011

In recent years there has been substantial growth in the development of algorithms for characterizing rare events in stochastic biochemical systems. Two such algorithms, the state-dependent weighted stochastic simulation algorithm (swSSA) and the doubly weighted SSA (dwSSA) are extensions of the weighted SSA (wSSA) by H. Kuwahara and I. Mura [J. Chem. Phys. 129, 165101 (2008)]10.1063/1.2987701. The swSSA substantially reduces estimator variance by implementing system state-dependent importance sampling (IS) parameters, but lacks an automatic parameter identification strategy. In contrast, the dwSSA provides for the automatic determination of state-independent IS parameters, thus it is inefficient for systems whose states vary widely in time. We present a novel modification of the dwSSA-the state-dependent doubly weighted SSA (sdwSSA)-that combines the strengths of the swSSA and the dwSSA without inheriting their weaknesses. The sdwSSA automatically computes state-dependent IS parameters via the multilevel cross-entropy method. We apply the method to three examples: a reversible isomerization process, a yeast polarization model, and a lac operon model. Our results demonstrate that the sdwSSA offers substantial improvements over previous methods in terms of both accuracy and efficiency. © 2011 American Institute of Physics.

Discover hidden collaborations