Dan ncan Comprehensive Cancer Center

Houston, TX, United States

Dan ncan Comprehensive Cancer Center

Houston, TX, United States
SEARCH FILTERS
Time filter
Source Type

Casadei L.,Ohio State University | Calore F.,Ohio State University | Creighton C.J.,Dan ncan Comprehensive Cancer Center | Guescini M.,Urbino University | And 17 more authors.
Cancer Research | Year: 2017

Despite the development of combined modality treatments against liposarcoma in recent years, a significant proportion of patients respond only modestly to such approaches, possibly contributing to local or distant recurrence. Early detection of recurrent or metastatic disease could improve patient prognosis by triggering earlier clinical intervention. However, useful biomarkers for such purposes are lacking. Using both patient plasma samples and cell lines, we demonstrate here that miR-25-3p and miR-92a-3p are secreted by liposarcoma cells through extracellular vesicles and may be useful as potential biomarkers of disease. Both miR-25-3p and miR-92a-3p stimulated secretion of proinflammatory cytokine IL6 from tumor-associated macrophages in a TLR7/8-dependent manner, which in turn promoted liposarcoma cell proliferation, invasion, and metastasis via this interaction with the surrounding microenvironment. Our findings provide novel and previously unreported insight into liposarcoma progression, identifying communication between liposarcoma cells and their microenvironment as a process critically involved in liposarcoma progression. This study establishes the possibility that the pattern of circulating miRNAs may identify recurrence prior to radiological detectability while providing insight into disease outcome and as a possible approach to monitor treatment efficacy. ©2017 AACR.


Li W.,Texas Childrens Hospital | Li W.,Baylor College of Medicine | Guo L.,Texas Childrens Hospital | Guo L.,Baylor College of Medicine | And 15 more authors.
Human Gene Therapy | Year: 2017

T cells engineered to express CD19-specific chimeric antigen receptors (CARs) have shown breakthrough clinical successes in patients with B-cell lymphoid malignancies. However, similar therapeutic efficacy of CAR T cells in solid tumors is yet to be achieved. In this study we systematically evaluated a series of CAR constructs targeting glypican-3 (GPC3), which is selectively expressed on several solid tumors. We compared GPC3-specific CARs that encoded CD3σ (Gz) alone or with costimulatory domains derived from CD28 (G28z), 4-1BB (GBBz), or CD28 and 4-1BB (G28BBz). All GPC3-CARs rendered T cells highly cytotoxic to GPC3-positive hepatocellular carcinoma, hepatoblastoma, and malignant rhabdoid tumor cell lines in vitro. GBBz induced the preferential production of Th1 cytokines (interferon γ/granulocyte macrophage colony-stimulating factor) while G28z preferentially induced Th2 cytokines (interleukin-4/interleukin-10). Inclusion of 4-1BB in G28BBz could only partially ameliorate the Th2-polarizing effect of CD28. 4-1BB induced superior expansion of CAR T cells in vitro and in vivo. T cells expressing GPC3-CARs incorporating CD28, 4-1BB, or both induced sustained tumor regressions in two xenogeneic tumor models. Thus, GBBz CAR endows T cells with superior proliferative potential, potent antitumor activity, and a Th1-biased cytokine profile, justifying further clinical development of GBBz CAR for immunotherapy of GPC3-positive solid tumors. © Mary Ann Liebert, Inc. 2016.


Becnel L.B.,Dan ncan Comprehensive Cancer Center | Darlington Y.F.,Dan ncan Comprehensive Cancer Center | Ochsner S.A.,Baylor College of Medicine | Easton-Marks J.R.,Dan ncan Comprehensive Cancer Center | And 8 more authors.
PLoS ONE | Year: 2015

Signaling pathways involving nuclear receptors (NRs), their ligands and coregulators, regulate tissue-specific transcriptomes in diverse processes, including development, metabolism, reproduction, the immune response and neuronal function, as well as in their associated pathologies. The Nuclear Receptor Signaling Atlas (NURSA) is a Consortium focused around a Hub website (www.nursa.org) that annotates and integrates diverse 'omics datasets originating from the published literature and NURSA-funded Data Source Projects (NDSPs). These datasets are then exposed to the scientific community on an Open Access basis through user-friendly data browsing and search interfaces. Here, we describe the redesign of the Hub, version 3.0, to deploy "Web 2.0" technologies and add richer, more diverse content. The Molecule Pages, which aggregate information relevant to NR signaling pathways from myriad external databases, have been enhanced to include resources for basic scientists, such as post-translational modification sites and targeting miRNAs, and for clinicians, such as clinical trials. A portal to NURSA's Open Access, PubMed-indexed journal Nuclear Receptor Signaling has been added to facilitate manuscript submissions. Datasets and information on reagents generated by NDSPs are available, as is information concerning periodic new NDSP funding solicitations. Finally, the new website integrates the Transcriptomine analysis tool, which allows for mining of millions of richly annotated public transcriptomic data points in the field, providing an environment for dataset re-use and citation, bench data validation and hypothesis generation. We anticipate that this new release of the NURSA database will have tangible, long term benefits for both basic and clinical research in this field. © This is an open access article, free of allcopyright, and may be freely reproduced, distributed,transmitted, modified, built upon, or otherwise usedby anyone for any lawful purpose. The work is madeavailable under the Creative Commons CC0 publicdomain dedication.

Loading Dan ncan Comprehensive Cancer Center collaborators
Loading Dan ncan Comprehensive Cancer Center collaborators