Entity

Time filter

Source Type

Dallas, TX, United States

Smith T.D.,Slippery Rock University | Smith T.D.,University of Pittsburgh | Garrett E.C.,City University of New York | Bhatnagar K.P.,University of Louisville | And 6 more authors.
Anatomical Record | Year: 2011

Although all platyrrhine primates possess a vomeronasal organ (VNO), few species have been studied in detail. Here, we revisit the microanatomy of the VNO and related features in serially sectioned samples from 41 platyrrhine cadavers (14 species) of mixed age. Procedures to identify terminally differentiated vomeronasal sensory neurons (VSNs) via immunolabeling of olfactory marker protein (OMP) were used on selected specimens. The VNO varies from an elongated epithelial tube (e.g., Ateles fusciceps) to a dorsoventrally expanded sac (e.g., Saguinus spp.). The cartilage that surrounds the VNO is J-shaped or U-shaped in most species, and articulates with a groove on the bony palate. Preliminary results indicate a significant correlation between the length of this groove and length of the VNO neuroepithelium, indicating this feature may serve as a skeletal correlate. The VNO neuroepithelium could be identified in all adult primates except Alouatta, in which poor preservation prevented determination. The VNO of Ateles, described in detail for the first time, had several rows of VSNs and nerves in the surrounding lamina propria. Patterns of OMP-reactivity in the VNO of perinatal platyrrhines indicate that few or no terminally differentiated VSNs are present at birth, thus supporting the hypothesis that some platyrrhines may have delayed maturation of the VNO. From a functional perspective, all platyrrhines studied possess structures required for chemoreception (VSNs, vomeronasal nerves). However, some microanatomical findings, such as limited reactivity to OMP in some species, indicate that some lineages of New World monkeys may have a reduced or vestigial vomeronasal system. © 2011 Wiley Periodicals, Inc. Source


Burrows A.M.,Duquesne University | Burrows A.M.,University of Pittsburgh | Diogo R.,George Washington University | Waller B.M.,University of Portsmouth | And 4 more authors.
Anatomical Record | Year: 2011

Facial expression is a communication mode produced by facial (mimetic) musculature. Hylobatids (gibbons and siamangs) have a poorly documented facial display repertoire and little is known about their facial musculature. These lesser apes represent an opportunity to test hypotheses related to the evolution of primate facial musculature as they are the only hominoid with a monogamous social structure, and thus live in very small groups. Primate species living in large groups with numerous social relationships, such as chimpanzees and rhesus macaques, have been shown to have a complex facial display repertoire and a high number of discrete facial muscles. The present study was designed to examine the relative influence of social structure and phylogeny on facial musculature evolution by comparing facial musculature complexity among hylobatids, chimpanzees, and rhesus macaques. Four faces were dissected from four hylobatid species. Morphology, attachments, three-dimensional relationships, and variation among specimens were noted and compared to rhesus macaques and chimpanzees. Microanatomical characteristics of the orbicularis oris muscle were also compared. Facial muscles of hylobatids were generally gracile and less complex than both the rhesus macaque and chimpanzee. Microanatomically, the orbicularis oris muscle of hylobatids was relatively loosely packed with muscle fibers. These results indicate that environmental and social factors may have been important in determining morphology and complexity of facial musculature in the less social hylobatids and that they may not have experienced as strong selection pressure for mimetic muscle complexity as other, more social primates. © 2011 Wiley-Liss, Inc. Source


Smith T.D.,Slippery Rock University | Smith T.D.,University of Pittsburgh | Rossie J.B.,State University of New York at Stony Brook | Cooper G.M.,University of Pittsburgh | And 6 more authors.
Anatomical Record | Year: 2012

The breakdown of nasal capsule cartilage precedes secondary pneumatic expansion of the paranasal sinuses. Recent work indicates the nasal capsule of monkeys undergoes different ontogenetic transformations regionally (i.e., ossification, persistence as cartilage, or resorption). This study assesses nasal capsule morphology at the perinatal age in a taxonomically broad sample of non-human primates. Using traditional histochemical methods, osteopontin immunohistochemistry and tartrate-resistant acid phosphatase procedure, the cartilage of the lateral nasal wall (LNC) was studied. At birth, matrix properties differ between portions of the LNC that ultimately form elements of the ethmoid bone and regions of the LNC that have no postnatal (descendant) structure. The extent of cartilage that remains in the paranasal parts of the LNC varies among species. It is fragmented in species with the greatest extent of maxillary and/or frontal pneumatic expansion. Conversely, greater continuity of the LNC is noted in newborns of species that lack maxillary and/or frontal sinuses as adults. Chondroclasts occur adjacent to elements of the ethmoid bone, along the margin of the nasal tectum, and/or along islands of cartilage that bear no signs of ossification. Chondroclasts are prevalent along remnants of the paranasal LNC in tamarin species (Leontopithecus, Saguinus), which have extensive frontal and maxillary bone pneumatization. Taken together, the morphological observations indicate that the localized loss of cartilage might be considered a critical event at the onset of secondary pneumatization, facilitated by rapid recruitment of chondro-/osteoclasts, possibly occurring simultaneously in cartilage and bone. © 2012 Wiley Periodicals, Inc. Source


Garrett E.C.,City University of New York | Dennis J.C.,Auburn University | Bhatnagar K.P.,University of Louisville | Durham E.L.,Duquesne University | And 8 more authors.
Anatomical Record | Year: 2013

This study investigates the vomeronasal organ in extant nocturnal strepsirhines as a model for ancestral primates. Cadaveric samples from 10 strepsirhine species, ranging from fetal to adult ages, were studied histologically. Dimensions of structures in the vomeronasal complex, such as the vomeronasal neuroepithelium (VNNE) and vomeronasal cartilage (VNC) were measured in serial sections and selected specimens were studied immunohistochemically to determine physiological aspects of the vomeronasal sensory neurons (VSNs). Osteological features corresponding to vomeronasal structures were studied histologically and related to 3-D CT reconstructions. The VNC consistently rests in a depression on the palatal portion of the maxilla, which we refer to as the vomeronasal groove (VNG). Most age comparisons indicate that in adults VNNE is about twice the length compared with perinatal animals. In VNNE volume, adults are 2- to 3-fold larger compared with perinatal specimens. Across ages, a strong linear relationship exists between VNNE dimensions and body length, mass, and midfacial length. Results indicate that the VNNE of nocturnal strepsirhines is neurogenic postnatally based on GAP43 expression. In addition, based on Olfactory Marker Protein expression, terminally differentiated VSNs are present in the VNNE. Therefore, nocturnal strepsirhines have basic similarities to rodents in growth and maturational characteristics of VSNs. These results indicate that a functional vomeronasal system is likely present in all nocturnal strepsirhines. Finally, given that osteological features such as the VNG are visible on midfacial bones, primate fossils can be assessed to determine whether primate ancestors possessed a vomeronasal complex morphologically similar to that of modern nocturnal strepsirhines. © 2013 Wiley Periodicals, Inc. Source


Cornejo J.,Dallas World Aquarium | Cornejo J.,Texas A&M University | Cornejo J.,Wildlife Conservation Society | Richardson D.,Dallas World Aquarium | And 4 more authors.
Journal of Zoo and Wildlife Medicine | Year: 2014

The horned guan (Oreophasis derbianus) is an endangered species with small and seriously fragmented wild populations. Breeding efforts during the last decade have maintained a slowly increasing captive population with the potential to play an important role in the recovery of the species. Clinical hematology and biochemistries are powerful tools to diagnose and monitor diseases in captive birds. Therefore, establishing hematologic and plasma biochemistry reference values will improve the medical management of this species. This study determines the reference values for 9 hematologic and 15 plasma biochemical variables for 27 male and 12 female, apparently healthy, captive horned guans from three institutions. Differences related to age, sex, and husbandry were identified but were usually small and clinically insignificant. These results should improve veterinary care of captive individuals of this species and provide comparative data for other species of cracids. © American Association of Zoo Veterinarians. Source

Discover hidden collaborations