Time filter

Source Type

Yu L.,Liaoning Normal University | Wang H.,Liaoning Normal University | Luan R.,Dalian Natural History Museum
BioMed Research International

Grateloupia tenuis Wang et Luan sp. nov. is a new species described from Lingshui, Hainan Province, South China Sea. Based on the external form and internal structure, combined with rbcL gene sequence analysis, Grateloupia tenuis is distinct from other Grateloupia species as follows: (1) thalli is slippery and cartilaginous in texture; possess fewer branches, relatively slight main axes, and two or three dichotomous branches; (2) cortex is 5-6 layers; medulla is solid when young, but hollow in old branches; reproductive structures are dispersed in main axes of thalli and lower portions of branchlets; exhibits Grateloupia-type auxiliary cell ampullae; (3) the four studied G. tenuis sequences were positioned in a large Grateloupia clade of Halymeniaceae, which included sister group generitype G. filicina with 68 bp differences; G. tenuis was determined to be a sister taxon to the G. catenata, G. ramosissima, G. orientalis, and G. filiformis subclade. The pairwise distances between G. tenuis and these species were 39 to 50 bp. The sequences of G. tenuis differed by 81-108 bp from the sequences of other samples in Grateloupia; there are 114-133 bp changes between G. tenuis and other genera of Halymeniaceae. In final analysis, we considered Grateloupia tenuis Wang et Luan sp. nov. to be a new species of genus Grateloupia. © 2013 Ling Yu et al. Source

Wang H.,Liaoning Normal University | Guo S.,Liaoning Normal University | Zhang X.,Liaoning Normal University | Zhao D.,Liaoning Normal University | And 2 more authors.
Acta Oceanologica Sinica

On the basis of morphological observations, life history and molecular phylogeny, Grateloupia yangjiangensis, which is similar to G. filicina, G. orientalis, G. catenata, and G. ramosissima in appearance, was re-examined. The results are as follows: (1) the auxiliary-cell ampullae of G. yangjiangensis were of Grateloupia type, thalli was fleshy and gelatinous in texture, and the erect axes were compressed; the cortex was 0.25-0.30 mm thick, consisting of five to seven outer layers, and there were five inner layers of triangular or stellate cells; (2) there was no filamentous stage in the development of the carpospores; (3) the ribulose-1, 5-bisphosphate carboxylase/oxygenase gene (rbcL) sequence of four G. yangjiangensis examined showed that there was no intergeneric divergence among them, and for the phylogenetic tree, four sequences of G. yangjiangensis formed a single monophyletic subclade within the large Grateloupia clade of Halymeniaceae. In conclusion, G. yangjiangensis was a single species within the genus Grateloupia. This research provided criterion for identification and cultivation of G. yangjiangensis. © 2014 The Chinese Society of Oceanography and Springer-Verlag Berlin Heidelberg. Source

Chiappe L.M.,Dinosaur Institute | Bo Z.,Dalian Natural History Museum | O'Connor J.K.,Institute of Vertebrate Paleontology and Paleoanthroplogy | Chunling G.,Dalian Natural History Museum | And 6 more authors.

The discovery of Hongshanornis longicresta, a small ornithuromorph bird with unusually long hindlimb proportions, was followed by the discovery of two closely related species, Longicrusavis houi and Parahongshanornis chaoyangensis. Together forming the Hongshanornithidae, these species reveal important information about the early diversity and morphological specialization of ornithuromorphs, the clade that contains all living birds. Here we report on a new specimen (DNHM D2945/6) referable toHongshanornis longicresta that contributes significant information to better understand the morphology, trophic ecology, and aerodynamics of this species, as well as the taxonomy of the Hongshanornithidae. Most notable are the wellpreserved wings and feathered tail of DNHM D2945/6, which afford an accurate reconstruction of aerodynamic parameters indicating that as early as 125 million years ago, basal ornithuromorphs had evolved aerodynamic surfaces comparable in size and design to those of many modern birds, and flight modes alike to those of some small living birds. © 2014 Chiappe et al. Source

Gao C.,Dalian Natural History Museum | Chiappe L.M.,Dinosaur Institute | Zhang F.,Dalian Natural History Museum | Pomeroy D.L.,Dinosaur Institute | And 3 more authors.
Journal of Vertebrate Paleontology

We describe the anatomy and bone microstructure of a new subadult specimen of Sapeornis chaoyangensis from the Early Cretaceous of Liaoning Province, China. To date, this is the only known sapeornithid that preserves substantial portions of its plumage. Found in the Yixian Formation, it also represents the oldest known sapeornithid, and as such, extends the stratigraphic range of this lineage 3-5 million years. This specimen also increases our knowledge of sapeornithid skeletal and integumentary anatomy, including previously unrecognized details of the primary and secondary wing feathers. Examination of the characters used to diagnose other named sapeornithid species reveals that such diagnoses have incorporated morphologies that are influenced by either taphonomy or ontogeny. Based on qualitative and quantitative comparisons between the new specimen and other sapeornithid species, we argue that all other named sapeornithids are junior synonyms of S. chaoyangensis. © 2012 Taylor & Francis Group, LLC. Source

Gao C.,Dalian Natural History Museum | Morschhauser E.M.,University of Pennsylvania | Varricchio D.J.,Montana State University | Liu J.,Dalian Natural History Museum | Zhao B.,Dalian Natural History Museum

A second nearly complete, articulated specimen of the basal troodontid Mei long (DNHM D2154) is reported from the Early Cretaceous (Hauterivian-Valanginian) lower Yixian Formation, Liaoning Province, China. New diagnostic features of Mei long are identified, including: a uniquely shaped maxilla, low with small, low maxillary fenestra; sacrum with an extremely wide caudal portion and elongate 4th and 5th sacral processes; and a large distal articular surface on the tibiotarsus which continues caudally on the tibia. A phylogenetic analysis including new data from the second specimen recovered Mei as a basal troodontid, in keeping with previous analyses. Although the skeleton exhibits several juvenile-like features including free cervical ribs, unfused frontals and nasals, and a short snouted skull, other attributes, full fusion of all neurocentral synostoses and the sacrum, and dense exteriors to cortical bone, suggest a small, mature individual. Microscopic examination of tibia and fibula histology confirms maturity and suggests an individual greater than two years old with slowed growth. Despite being one of the smallest dinosaurs, Mei long exhibits multi-year growth and cortical bone consisting largely of fibro-lamellar tissue marked by lines of arrested growth as in much larger and more basal theropods. This Mei long specimen lies in a similar but mirrored sleeping position to that of the holotype, strengthening the hypothesis that both specimens were preserved in a stereotypical life position. Like many Liaoning specimens, the new specimen also lacks extensive taphonomic and stratigraphic data, making further behavioral inference problematic. © 2012 Gao et al. Source

Discover hidden collaborations