Dalian Institute of Biotechnology

Dalian, China

Dalian Institute of Biotechnology

Dalian, China
Time filter
Source Type

Yang Z.,Kunming Medical University | Li C.,Kunming Medical University | Miao M.,Kunming Medical University | Miao M.,Pennsylvania State University | And 7 more authors.
Emerging Infectious Diseases | Year: 2011

We performed a molecular epidemiologic survey of mutations associated with drug-resistance genes in Plasmodium falciparum in northeastern Myanmar. In this region, 3 highly mutated drug-resistance haplotypes and 1 associated with decreased quinine susceptibility were prevalent, which suggests that parasites may be resistant to multiple commonly used antimalarial drugs.

Parker D.M.,Pennsylvania State University | Matthews S.A.,Pennsylvania State University | Yan G.,University of California at Irvine | Zhou G.,University of California at Irvine | And 7 more authors.
Malaria Journal | Year: 2015

Background: Endemic malaria in Thailand continues to only exist along international borders. This pattern is frequently attributed to importation of malaria from surrounding nations. A microgeographical approach was used to investigate malaria cases in a study village along the Thailand-Myanmar border. Methods: Three mass blood surveys were conducted during the study period (July and December 2011, and May 2012) and were matched to a cohort-based demographic surveillance system. Blood slides and filter papers were taken from each participant. Slides were cross-verified by an expert microscopist and filter papers were analysed using nested PCR. Cases were then mapped to households and analysed using spatial statistics. A risk factor analysis was done using mixed effects logistic regression. Results: In total, 55 Plasmodium vivax and 20 Plasmodium falciparum cases (out of 547 participants) were detected through PCR, compared to six and two (respectively) cases detected by field microscopy. The single largest risk factor for infection was citizenship. Many study participants were ethnic Karen people with no citizenship in either Thailand or Myanmar. This subpopulation had over eight times the odds of malaria infection when compared to Thai citizens. Cases also appeared to cluster near a major drainage system and year-round water source within the study village. Conclusion: This research indicates that many cases of malaria remain undiagnosed in the region. The spatial and demographic clustering of cases in a sub-group of the population indicates either transmission within the Thai village or shared exposure to malaria vectors outside of the village. While it is possible that malaria is imported to Thailand from Myanmar, the existence of undetected infections, coupled with an ecological setting that is conducive to malaria transmission, means that indigenous transmission could also occur on the Thai side of the border. Improved, timely, and active case detection is warranted. © 2015 Parker et al.; licensee BioMed Central.

Li P.,Dalian Institute of Biotechnology | Zhao Z.,Dalian Institute of Biotechnology | Wang Y.,Chongqing Medical University | Xing H.,Dalian University of Technology | And 10 more authors.
Malaria Journal | Year: 2014

Background: Nested PCR is considered a sensitive and specific method for detecting malaria parasites and is especially useful in epidemiological surveys. However, the preparation of DNA templates for PCR is often time-consuming and costly. Methods. A simplified PCR method was developed to directly use a small blood filter paper square (2 × 2 mm) as the DNA template after treatment with saponin. This filter paper-based nested PCR method (FP-PCR) was compared to microscopy and standard nested PCR with DNA extracted by using a Qiagen DNA mini kit from filter paper blood spots of 204 febrile cases. The FP-PCR technique was further applied to evaluate malaria infections in 1,708 participants from cross-sectional epidemiological surveys conducted in Myanmar and Thailand. Results: The FP-PCR method had a detection limit of ∼0.2 parasites/μL blood, estimated using cultured Plasmodium falciparum parasites. With 204 field samples, the sensitivity of the FP-PCR method was comparable to that of the standard nested PCR method, which was significantly higher than that of microscopy. Application of the FP-PCR method in large cross-sectional studies conducted in Myanmar and Thailand detected 1.9% (12/638) and 6.2% (66/1,070) asymptomatic Plasmodium infections, respectively, as compared to the detection rates of 1.3% (8/638) and 0.04% (4/1,070) by microscopy. Conclusion: This FP-PCR method was much more sensitive than microscopy in detecting Plasmodium infections. It drastically increased the detection sensitivity of asymptomatic infections in cross-sectional surveys conducted in Thailand and Myanmar, suggesting that this FP-PCR method has a potential for future applications in malaria epidemiology studies. © 2014 Li et al.; licensee BioMed Central Ltd.

PubMed | University of California at Irvine, Dalian Institute of Biotechnology, Pennsylvania State University, Kunming Medical University and 3 more.
Type: Journal Article | Journal: Malaria journal | Year: 2016

The Greater Mekong Subregion is aiming to achieve regional malaria elimination by 2030. Though a shift in malaria parasite species predominance by Plasmodium vivax has been recently documented, the transmission of the two minor Plasmodium species, Plasmodium malariae and Plasmodium ovale spp., is poorly characterized in the region. This study aims to determine the prevalence of these minor species in the China-Myanmar border area and their genetic diversity.Epidemiology study was conducted during passive case detection in hospitals and clinics in Myanmar and four counties in China along the China-Myanmar border. Cross-sectional surveys were conducted in villages and camps for internally displaced persons to determine the prevalence of malaria infections. Malaria infections were diagnosed initially by microscopy and later in the laboratory using nested PCR for the SSU rRNA genes. Plasmodium malariae and P. ovale infections were confirmed by sequencing the PCR products. The P. ovale subtypes were determined by sequencing the Pocytb, Pocox1 and Pog3p genes. Parasite populations were evaluated by PCR amplification and sequencing of the MSP-1 genes. Antifolate sensitivity was assessed by sequencing the dhfr-ts and dhps genes from the P. malariae and P. ovale isolates.Analysis of 2701 blood samples collected from the China-Myanmar border by nested PCR targeting the parasite SSU rRNA genes identified 561 malaria cases, including 161 Plasmodium falciparum, 327 P. vivax, 66 P. falciparum/P. vivax mixed infections, 4 P. malariae and 3 P. ovale spp. P. vivax and P. falciparum accounted for >60 and ~30% of all malaria cases, respectively. In comparison, the prevalence of P. malariae and P. ovale spp. was very low and only made up ~1% of all PCR-positive cases. Nevertheless, these two species were often misidentified as P. vivax infections or completely missed by microscopy even among symptomatic patients. Phylogenetic analysis of the SSU rRNA, Pocytb, Pocox1 and Pog3p genes confirmed that the three P. ovale spp. isolates belonged to the subtype P. ovale curtisi. Low-level genetic diversity was detected in the MSP-1, dhfr and dhps genes of these minor parasite species, potentially stemming from the low prevalence of these parasites preventing their mixing. Whereas most of the dhfr and dhps positions equivalent to those conferring antifolate resistance in P. falciparum and P. vivax were wild type, a new mutation S113C corresponding to the S108 position in pfdhfr was identified in two P. ovale curtisi isolates.The four human malaria parasite species all occurred sympatrically at the China-Myanmar border. While P. vivax has become the predominant species, the two minor parasite species also occurred at very low prevalence but were often misidentified or missed by conventional microscopy. These minor parasite species displayed low levels of polymorphisms in the msp-1, dhfr and dhps genes.

Li N.,Chongqing Medical University | Li N.,Kunming Medical College | Parker D.M.,Pennsylvania State University | Yang Z.,Kunming Medical College | And 9 more authors.
Malaria Journal | Year: 2013

Background: Malaria within the Greater Mekong sub-region is extremely heterogeneous. While China and Thailand have been relatively successful in controlling malaria, Myanmar continues to see high prevalence. Coupled with the recent emergence of artemisinin-resistant malaria along the Thai-Myanmar border, this makes Myanmar an important focus of malaria within the overall region. However, accurate epidemiological data from Myanmar have been lacking, in part because of ongoing and emerging conflicts between the government and various ethnic groups. Here the results are reported from a risk analysis of malaria slide positivity in a conflict zone along the China-Myanmar border. Methods. Surveys were conducted in 13 clinics and hospitals around Laiza City, Myanmar between April 2011 and October 2012. Demographic, occupational and educational information, as well as malaria infection history, were collected. Logistic models were used to assess risk factors for slide positivity. Results: Age patterns in Plasmodium vivax infections were younger than those with Plasmodium falciparum. Furthermore, males were more likely than females to have falciparum infections. Patients who reported having been infected with malaria during the previous year were much more likely to have a current vivax infection. During the second year of the study, falciparum infections among soldiers increased signficiantly. Conclusions: These results fill some knowledge gaps with regard to risk factors associated with malaria slide positivity in this conflict region of north-eastern Myanmar. Since epidemiological studies in this region have been rare or non-existent, studies such as the current are crucial for understanding the dynamic nature of malaria in this extremely heterogeneous epidemiological landscape. © 2013 Li et al.; licensee BioMed Central Ltd.

Miao J.,Pennsylvania State University | Fan Q.,Pennsylvania State University | Fan Q.,Dalian Institute of Biotechnology | Parker D.,Pennsylvania State University | And 3 more authors.
PLoS Pathogens | Year: 2013

Translational control of gene expression plays an essential role in development. In malaria parasites, translational regulation is critical during the development of specialized transition stages between the vertebrate host and mosquito vector. Here we show that a Pumilio/FBF (Puf) family RNA-binding protein, PfPuf2, is required for the translation repression of a number of transcripts in gametocytes including two genes encoding the transmission-blocking vaccine candidates Pfs25 and Pfs28. Whereas studies to date support a paradigm of Puf-mediated translation regulation through 3′ untranslated regions (UTRs) of target mRNAs, this study, for the first time, identifies a functional Puf-binding element (PBE) in the 5′UTR of pfs25. We provide both in vitro and in vivo evidence to demonstrate that PfPuf2 binds to the PBEs in pfs25 and pfs28 to mediate translation repression. This finding provides a renewed view of Pufs as versatile translation regulators and sheds light on their functions in the development of lower branches of eukaryotes. © 2013 Miao et al.

Wang Z.,Pennsylvania State University | Parker D.,Pennsylvania State University | Meng H.,Pennsylvania State University | Meng H.,Kunming Medical University | And 8 more authors.
PLoS ONE | Year: 2012

Drug resistance has always been one of the most important impediments to global malaria control. Artemisinin resistance has recently been confirmed in the Greater Mekong Subregion (GMS) and efforts for surveillance and containment are intensified. To determine potential mechanisms of artemisinin resistance and monitor the emergence and spread of resistance in other regions of the GMS, we investigated the in vitro sensitivity of 51 culture-adapted parasite isolates from the China-Myanmar border area to four drugs. The 50% inhibitory concentrations (IC50s) of dihydroartemisinin, mefloquine and lumefantrine were clustered in a relatively narrow, 3- to 6-fold range, whereas the IC50 range of artesunate was 12-fold. We assessed the polymorphisms of candidate resistance genes pfcrt, pfmdr1, pfATP6, pfmdr6 and pfMT (a putative metabolite/drug transporter). The K76T mutation in pfcrt reached fixation in the study parasite population, whereas point mutations in pfmdr1 and pfATP6 had low levels of prevalence. In addition, pfmdr1 gene amplification was not detected. None of the mutations in pfmdr1 and pfATP6 was associated significantly with in vitro sensitivity to artemisinin derivatives. The ABC transporter gene pfmdr6 harbored two point mutations, two indels, and number variations in three simple repeats. Only the length variation in a microsatellite repeat appeared associated with altered sensitivity to dihydroartemisinin. The PfMT gene had two point mutations and one codon deletion; the I30N and N496- both reached high levels of prevalence. However, none of the SNPs or haplotypes in PfMT were correlated significantly with resistance to the four tested drugs. Compared with other parasite populations from the GMS, our studies revealed drastically different genotype and drug sensitivity profiles in parasites from the China-Myanmar border area, where artemisinins have been deployed extensively for over 30 years. © 2012 Wang et al.

PubMed | Pennsylvania State University, Ehime University, Liaoning Medical University and Dalian Institute of Biotechnology
Type: Journal Article | Journal: Parasites & vectors | Year: 2017

Plasmodium ookinete surface proteins as post-fertilization target antigens are potential malaria transmission-blocking vaccine (TBV) candidates. Putative secreted ookinete protein 25 (PSOP25) is a highly conserved ookinete surface protein, and has been shown to be a promising novel TBV target. Here, we further investigated the TBV activities of the full-length recombinant PSOP25 (rPSOP25) protein in Plasmodium berghei, and characterized the potential functions of PSOP25 during the P. berghei life-cycle.We expressed the full-length P. berghei PSOP25 protein in a prokaryotic expression system, and developed polyclonal mouse antisera and a monoclonal antibody (mAb) against the recombinant protein. Indirect immunofluorescence assay (IFA) and Western blot were used to test the specificity of antibodies. The transmission-blocking (TB) activities of antibodies were evaluated by the in vitro ookinete conversion assay and by direct mosquito feeding assay (DFA). Finally, the function of PSOP25 during Plasmodium development was studied by deleting the psop25 gene.Both polyclonal mouse antisera and anti-rPSOP25 mAb recognized the PSOP25 proteins in the parasites, and IFA showed the preferential expression of PSOP25 on the surface of zygotes, retorts and mature ookinetes. In vitro, these antibodies significantly inhibited ookinetes formation in an antibody concentration-dependent manner. In DFA, mice immunized with the rPSOP25 and those receiving passive transfer of the anti-rPSOP25 mAb reduced the prevalence of mosquito infection by 31.2 and 26.1%, and oocyst density by 66.3 and 63.3%, respectively. Genetic knockout of the psop25 gene did not have a detectable impact on the asexual growth of P. berghei, but significantly affected the maturation of ookinetes and the formation of midgut oocysts.The full-length rPSOP25 could elicit strong antibody response in mice. Polyclonal and monoclonal antibodies against PSOP25 could effectively block the formation of ookinetes in vitro and transmission of the parasites to mosquitoes. Genetic manipulation study indicated that PSOP25 is required for ookinete maturation in P. berghei. These results support further testing of the PSOP25 orthologs in human malaria parasites as promising TBV candidates.

PubMed | Pennsylvania State University, Dalian Institute of Biotechnology and Liaoning Medical University
Type: | Journal: Parasites & vectors | Year: 2016

Transmission-blocking vaccines (TBVs) are a promising strategy for malaria control and elimination. However, candidate TBV antigens are currently limited, highlighting the urgency of identifying new antigens for TBV development.Using a combination of bioinformatic analysis and functional studies in the rodent malaria model Plasmodium berghei, we identified a conserved Plasmodium protein PbPH (PBANKA_041720) containing a pleckstrin homology (PH) domain. The expression of PbPH was detected by Western blot and indirect immunofluorescence assay (IFA). The function of PbPH was tested by genetic knockout. The TB activity was confirmed by in vitro ookinete conversion assay and mosquito feeding.PbPH was detected in Western blot as highly expressed in sexual stages (gametocytes and ookinetes). IFA revealed localizations of PbPH on the surface of gametes, zygotes, and ookinetes. Deletion of the pbph gene did not affect asexual growth, but significantly reduced the formation of gametocytes, ookinetes, and oocysts, indicating that PbPH protein is required for parasite sexual development. Recombinant PbPH expressed and purified from bacteria elicited strong antibody responses in mice and the antibodies significantly inhibited exflagellation of male gametocytes and formation of ookinetes in a concentration-dependent manner. Mosquito feeding experiments confirmed that mosquitoes fed on mice immunized with PbPH had 13 % reduction in the prevalence of infection and almost 48 % reduction in oocyst density.Pbph is a highly conserved Plasmodium gene and is required for parasite sexual development. PbPH protein is expressed on the surface of gametes and ookinetes. Immunization of mice against the recombinant PbPH protein induced strong antibody responses that effectively reduced the formation of male gametes and ookinetes in vitro and blocked transmission of the parasites to mosquitoes. These results highlight PbPH as a potential TBV candidate that is worth future investigations in human malaria parasites.

PubMed | University of California at Irvine, Dalian Institute of Biotechnology, Pennsylvania State University, Clemson University and 2 more.
Type: | Journal: Acta tropica | Year: 2016

Malaria transmission is heterogeneous in the Greater Mekong Subregion with most of the cases occurring along international borders. Knowledge of transmission hotspots is essential for targeted malaria control and elimination in this region. This study aimed to determine the dynamics of malaria transmission and possible existence of transmission hotspots on a microgeographical scale along the China-Myanmar border. Microscopically confirmed clinical malaria cases were recorded in five border villages through a recently established surveillance system between January 2011 and December 2014. A total of 424 clinical cases with confirmed spatial and temporal information were analyzed, of which 330 (77.8%) were Plasmodium vivax and 88 (20.8%) were Plasmodium falciparum, respectively. The P. vivax and P. falciparum case ratio increased dramatically from 2.2 in 2011 to 4.7 in 2014, demonstrating that P. vivax malaria has become the predominant parasite species. Clinical infections showed a strong bimodal seasonality. There were significant differences in monthly average incidence rates among the study villages with rates in a village in China being 3-8 folds lower than those in nearby villages in Myanmar. Spatial analysis revealed the presence of clinical malaria hotspots in four villages. This information on malaria seasonal dynamics and transmission hotspots should be harnessed for planning targeted control.

Loading Dalian Institute of Biotechnology collaborators
Loading Dalian Institute of Biotechnology collaborators