Time filter

Source Type

Centennial, CO, United States

Sanders M.E.,Dairy and Food Culture Technologies | Marco M.L.,University of California at Davis
Annual Review of Food Science and Technology

Probiotic bacteria are increasingly incorporated into food products intended to confer health benefits in the human gut and beyond. Little is known about how the food matrix and product formulation impacts probiotic functionality, even though such information is essential to scientific understanding and regulatory substantiation of health benefits. The food format has the potential to affect probiotic survival, physiology, and potentially efficacy, but few comparative studies in humans have been conducted. Human studies should account for the effects of the food base on human health and the bioactive components present in the foods that may augment or diminish interactions of the probiotic with the human host. Some studies show that food ingredients such as prebiotics and milk components can improve probiotic survival during the shelf life of foods, which may enhance probiotic efficacy through increased dose effects. Furthermore, there are indications that synbiotic products are more effective than either probiotics or prebiotics alone. Identification of probiotic adaptations to the food and gut environments holds promise for determining the specific cell components and potential bacterial-food interactions necessary for health benefits and determining how these factors are affected by changes in food formulation and host diet. These studies, combined with controlled human studies, are important future research activities for advancing this field. Copyright © 2010 by Annual Reviews. All rights reserved. Source

Sanders M.E.,Dairy and Food Culture Technologies
Journal of Clinical Gastroenterology

Although precise mechanisms responsible for all demonstrations of probiotic health benefits are not known, many lines of evidence suggest that probiotics function through direct or indirect impact on colonizing microbiota of the gut. Probiotics can directly influence colonizing microbes through multiple mechanisms, including the production of inhibitory compounds (bacteriocins, short chain fatty acids, and others), by producing substrates that might promote the growth of colonizing microbes (secreted exopolysaccharides, vitamins, fatty acids, sugars from undigested carbohydrates and others), and by promoting immune responses against specific microbes. Indirectly, probiotics can influence colonizing microbes by inhibiting attachment through stimulated mucin production, reinforcing gut barrier effects, and downregulation of gut inflammation, thereby promoting microbes that are associated with a healthier gut physiology. Although the value of targeted changes in populations of gut bacteria is a matter of debate, increased levels of Bifidobacterium and Lactobacillus in the gut correlate with numerous health endpoints. Microbiota changes due to probiotic intake include increased numbers of related phylotypes, decreasing pathogens and their toxins, altering bacterial community structure to enhance evenness, stabilizing bacterial communities when perturbed (eg, with antibiotics), or promoting a more rapid recovery from a perturbation. Further research will provide insight into the degree of permanence of probiotic-induced changes, although research to date suggests that continued probiotic consumption is needed for sustained impact. Copyright © 2011 by Lippincott Williams & Wilkins. Source

Backhed F.,Sahlgrenska University Hospital | Fraser C.M.,University of Maryland Baltimore County | Ringel Y.,University of North Carolina at Chapel Hill | Sanders M.E.,Dairy and Food Culture Technologies | And 5 more authors.
Cell Host and Microbe

Indigenous microbiota are an essential component in the modern concept of human health, but the composition and functional characteristics of a healthy microbiome remain to be precisely defined. Patterns of microbial colonization associated with disease states have been documented, but the health-associated microbial patterns and their functional characteristics are less clear. A healthy microbiome, considered in the context of body habitat or body site, could be described in terms of ecologic stability (i.e., ability to resist community structure change under stress or to rapidly return to baseline following a stress-related change), by an idealized (presumably health-associated) composition or by a desirable functional profile (including metabolic and trophic provisions to the host). Elucidation of the properties of healthy microbiota would provide a target for dietary interventions and/or microbial modifications aimed at sustaining health in generally healthy populations and improving the health of individuals exhibiting disrupted microbiota and associated diseases. © 2012 Elsevier Inc. Source

Klein M.,U.S. National Institutes of Health | Sanders M.E.,Dairy and Food Culture Technologies | Duong T.,Texas A&M University | Young H.A.,U.S. National Institutes of Health
Annals of the New York Academy of Sciences

"Probiotics: From Bench to Market" was a one-day conference convened by the New York Academy of Sciences on June 11, 2010, with the goal of stimulating discussion of the physiological effects of probiotics on the gastrointestinal, nervous, and immune systems. The program included speakers from academia, industry, and government to give conference participants a full understanding of the state of the field of probiotics. The overall goal of the program was to increase communication and collaboration among these groups to advance probiotic research and probiotic contributions to public health. The conference was divided into three sessions and included both oral and visual presentations as well as panel discussions. © 2010 New York Academy of Sciences. Source

King S.,York Health Economics Consortium | Glanville J.,York Health Economics Consortium | Sanders M.E.,Dairy and Food Culture Technologies | Fitzgerald A.,York Health Economics Consortium | Varley D.,York Health Economics Consortium
British Journal of Nutrition

Recent systematic reviews have reported a positive, although modest, effect of probiotics in terms of preventing common cold symptoms. In this systematic review, the effect of probiotics, specifically Lactobacillus and Bifidobacterium strains, on the duration of acute respiratory infections in otherwise healthy children and adults was evaluated. To identify relevant trials, eight databases, including MEDLINE, Embase, the Cochrane Database of Systematic Reviews (CDSR), the Cochrane Central Register of Controlled Trials (CENTRAL), the Database of Abstracts of Reviews of Effects (DARE), Health Technology Assessment (HTA), Science Citation Index (SCI) and OAISTER, were searched from inception to 20 July 2012. Details regarding unpublished studies/databases were also obtained from probiotic manufacturers. Study selection, data extraction and quality assessment were carried out by two reviewers. Risk of bias was assessed using criteria adapted from those published by the Centre for Reviews and Dissemination. In this review, twenty randomised controlled trials (RCT) were included, of which twelve were considered to have a low risk of bias. Meta-analysis revealed significantly fewer numbers of days of illness per person (standardised mean difference (SMD) -0·31 (95 % CI -0·41, -0·11), I 2=3 %), shorter illness episodes by almost a day (weighted mean difference -0·77 (95 % CI -1·50, -0·04), I 2= 80 %) (without an increase in the number of illness episodes), and fewer numbers of days absent from day care/school/work (SMD -0·17 (95 % CI -0·31, -0·03), I 2= 67 %) in participants who received a probiotic intervention than in those who had taken a placebo. Reasons for heterogeneity between the studies were explored in subgroup analysis, but could not be explained, suggesting that the effect sizes found may differ between the population groups. This systematic review provides evidence from a number of good-quality RCT that probiotics reduce the duration of illness in otherwise healthy children and adults. Copyright © The Authors 2014 The Authors 2014. The online version of this article is published within an Open Access environment subject to the conditions of the Creative Commons Attribution licence. Source

Discover hidden collaborations