Entity

Time filter

Source Type

Neu-Ulm, Germany

Hahn M.,Daimler Group Research | Barrois B.,Daimler Group Research | Kruger L.,Daimler Group Research | Wohler C.,Otto Group | And 2 more authors.
3D Research | Year: 2010

This study introduces an approach to model-based 3D pose estimation and instantaneous motion analysis of the human hand-forearm limb in the application context of safe human-robot interaction. 3D pose estimation is performed using two approaches: The Multiocular Contracting Curve Density (MOCCD) algorithm is a top-down technique based on pixel statistics around a contour model projected into the images from several cameras. The Iterative Closest Point (ICP) algorithm is a bottom-up approach which uses a motion-attributed 3D point cloud to estimate the object pose. Due to their orthogonal properties, a fusion of these algorithms is shown to be favorable. The fusion is performed by a weighted combination of the extracted pose parameters in an iterative manner. The analysis of object motion is based on the pose estimation result and the motion-attributed 3D points belonging to the hand-forearm limb using an extended constraint-line approach which does not rely on any temporal filtering. A further refinement is obtained using the Shape Flow algorithm, a temporal extension of the MOCCD approach, which estimates the temporal pose derivative based on the current and the two preceding images, corresponding to temporal filtering with a short response time of two or at most three frames. Combining the results of the two motion estimation stages provides information about the instantaneous motion properties of the object. Experimental investigations are performed on real-world image sequences displaying several test persons performing different working actions typically occurring in an industrial production scenario. In all example scenes, the background is cluttered, and the test persons wear various kinds of clothes. For evaluation, independently obtained ground truth data are used. © 2010 3D Display Research Center and Springer-Verlag Berlin Heidelberg.


Jander K.,University of Hamburg | Braubach L.,University of Hamburg | Pokahr A.,University of Hamburg | Lamersdorf W.,University of Hamburg | Wack K.-J.,Daimler Group Research
International Journal on Artificial Intelligence Tools | Year: 2011

Business process management is a challenging task that requires business processes being described, executed, monitored and continuously enhanced. This process management lifecycle requires business as well as IT people working together, whereby the view on business process is quite different on both sides. One important means for bridging the gap between both consists in having a modeling notation that can be easily understood but also has a precise semantics and can be used as a basis for workflow execution. Although existing approaches like BPMN and EPCs aim at being such as notation they are already very activity oriented and do not consider the underlying motivations of processes. Introducing the goal oriented process modeling notation (GPMN) a new language is presented that has the objective of bringing together both sides by establishing higher-level modeling concepts for workflows. This results in an increased intelligibility of workflow descriptions for business people and greater consideration for the way processes are described on the business side. The core idea of the approach consists in introducing different kinds of goals and goal relationships in addition to the established activity-centered behavior model. The applicability of the approach is further illustrated with an example workflow from Daimler AG. © 2011 World Scientific Publishing Company.


Braubach L.,University of Hamburg | Pokahr A.,University of Hamburg | Jander K.,University of Hamburg | Lamersdorf W.,University of Hamburg | Burmeister B.,Daimler Group Research
Studies in Computational Intelligence | Year: 2010

Many companies consider business process management strategies a fundamental source for successful business operation. Despite this importance of business processes a conceptual and operational gap still exists between the business and the IT view of processes. In this paper we argue that an important reason for this gap is the strong focus of IT on the behaviour and execution perspective of workflows while more abstract and higher-level process properties are often neglected. This is especially apparent in the way processes are modelled and described on the IT-side using state of the art modelling approaches like BPMN. The presented Go4Flex research project, which is conducted in cooperation with Daimler AG, has the objective of bringing together both sides by establishing higher-level modelling concepts for workflows, which results both in increased intelligibility of workflow descriptions for business people and greater consideration for the way processes are described on the business side. The core idea of the approach is to strengthen the context perspective of a workflow by introducing different kinds of goals and goal relationships in addition to the established activity-centred behaviour model. The applicability of the approach is further illustrated with an example workflow from Daimler AG. © 2010 Springer-Verlag Berlin Heidelberg.

Discover hidden collaborations