Time filter

Source Type

Arumbakkam, India

Kumaran R.,Vaishnav College Autonomous | Vanjinathan M.,Vaishnav College Autonomous | Ramamurthy P.,University of Madras
Journal of Luminescence | Year: 2015

Resorcinol based acridinedione (ADDR) dyes are a class of laser dyes and have structural similarity with purine derivatives, nicotinamide adenine dinucleotide (NADH) analogs. These dyes are classified into photoinduced electron transfer (PET) and non-photoinduced electron transfer dyes, and the photophysical properties of family of these dyes exhibiting PET behavior are entirely different from that of non-PET dyes. The PET process in ADDR dyes is governed by the solvent polarity such that an ADDR dye exhibits PET process through space in an aprotic solvent like acetonitrile and does not exhibit the same in protic solvents like water and methanol. A comparison on the fluorescence emission, lifetime and nature of interaction of various ADDR dyes with a large globular protein like Bovine Serum Albumin (BSA) was carried out in aqueous solution. The interaction of PET based ADDR dyes with BSA in water is found to be largely hydrophobic, but hydrogen-bonding interaction of BSA with dye molecule influences the fluorescence emission of the dye and shifts the emission towards red region. Fluorescence spectral studies reveal that the excited state properties of PET based ADDR dyes are largely influenced by the addition of BSA. The microenvironment around the dye results in significant change in the fluorescence lifetime and emission. Fluorescence enhancement with a red shift in the emission results after the addition of BSA to ADDR dyes containing free amino hydrogen in the 10th position of basic acridinedione dye. The amino hydrogen (N-H) in the 10th position of ADDR dye is replaced by methyl group (N-CH3), a significant decrease in the fluorescence intensity with no apparent shift in the emission maximum was observed after the addition of BSA. The nature of interaction between ADDR dyes with BSA is hydrogen-bonding and the dye remains unbound even at the highest concentration of BSA. Circular Dichroism (CD) studies show that the addition of dye to BSA results in a decrease in the alpha helical content of the protein. The shape and the pattern of CD bands after the addition of ADDR dye to BSA remain largely unaltered. © 2015 Elsevier B.V. All rights reserved. Source

Discover hidden collaborations