Entity

Time filter

Source Type

Deerfield, IL, United States

Petkovich M.,Queens University | Petkovich M.,Cytochroma | Jones G.,Queens University
Current Opinion in Nephrology and Hypertension | Year: 2011

Purpose of review Patients with chronic renal disease have elevated serum phosphate levels, elevated fibroblast-like growth factor 23 (FGF-23), and declining vitamin D status. These changes are related and may be responsible for elevated 25-hydroxyvitamin D-24- hydroxylase (CYP24A1) and dysfunctional vitamin D metabolism. This review focuses on the biochemistry and pathophysiology of CYP24A1 and the utility of blocking this enzyme with CYP24A1 inhibitors in chronic kidney disease (CKD) patients. Recent findings CYP24A1 is the cytochrome P450 enzyme that catalyzes the conversion of 25- hydroxyvitamin D3 (25-OHD3) and its hormonal form, 1,25-dihydroxyvitamin D3 [1,25- (OH)2D3], into 24-hydroxylated products targeted for excretion. The CYP24A1-null phenotype is consistent with the catabolic role of CYP24A1. A number of polymorphisms of CYP24A1 have recently been identified. New data from the uremic rat and humans suggest that dysfunctional vitamin D metabolism is due to changes in CYP24A1 expression caused by phosphate and FGF-23 elevations. Summary Changes in serum phosphate and FGF-23 levels in the CKD patient increase CYP24A1 expression resulting in decreased vitamin D status. Vitamin D deficiency may exacerbate defective calcium and phosphate homeostasis causing renal osteodystrophy and contribute to the other complications of renal disease. These findings argue for increased focus on correcting vitamin D deficiency in CKD patients by blocking CYP24A1 activity. © 2011 Wolters Kluwer Health | Lippincott Williams & Wilkins. Source


Patent
Proventiv Therapeutics Llc and Cytochroma | Date: 2013-01-22

A stable, controlled release formulation for oral dosing of vitamin D compounds is disclosed. The formulation is prepared by incorporating one or more vitamin D compounds into a solid or semi-solid mixture of waxy materials. Oral dosage forms can be prepared by melt-blending the components described herein and filling gelatin capsules with the formulation.


There is provided a granular material comprising (i) at least 50% by weight based on the weight of the granular material of solid water-insoluble mixed metal compound capable of binding phosphate of formula (I): M


Patent
Johns Hopkins University and Cytochroma | Date: 2011-01-13

This present disclosure is directed to novel prodrugs of activated vitamin D3 compounds. The prodrugs can be designed to have one or more beneficial properties, such as selective inhibition of the enzyme CYP24, low calcemic activity, and anti-proliferative activity. Specifically, these prodrugs are 1-deoxy prohormones of active Vitamin D analogs, e.g. analogs of calcitriol. This disclosure is also directed to pharmaceutical and diagnostic compositions containing the prodrugs of the invention, and to their medical use, particularly as prodrugs in the treatment and/or prevention of diseases.


Patent
Cytochroma | Date: 2013-10-28

A mixed metal compound for pharmaceutical use is free from aluminium and has a phosphate binding capacity of at least 30%, by weight of the total weight of phosphate present, over a pH range of from 2-8. The compound is especially useful for treatment of hyperphosphataemia. The metals are preferably iron (III) and at least one of calcium, magnesium, lanthanum and cerium. A metal sulphate for pharmaceutical use is selected from at least one of calcium, lanthanum and cerium sulphate compounds and has a phosphate binding capacity of at least 30% by weight of the total phosphate present, over a pH range from 2-8.

Discover hidden collaborations