Time filter

Source Type

Carbone A.,Medical Genetics Laboratory | Carbone A.,University of Foggia | Castellani S.,University of Foggia | Favia M.,University of Bari | And 7 more authors.
Journal of Cellular and Molecular Medicine | Year: 2014

Cystic fibrosis (CF) is caused by mutations in the CF transmembrane conductance regulator (CFTR) gene, with most of the mortality given by the lung disease. Human amniotic mesenchymal stromal (stem) cells (hAMSCs) hold great promise for regenerative medicine in the field of lung disease; however, their potential as therapeutics for CF lung disease has not been fully explored. In the present study, hAMSCs were analysed in co-cultures on Transwell filters with CF immortalized airway epithelial cells (CFBE41o- line) at different ratios to exploit their potency to resume basic defects associated with CF. The results show that F-actin content was increased in co-cultures as compared with CF cells and actin was reorganized to form stress fibres. Confocal microscopy studies revealed that co-cultures had a tendency of increased expression of occludin and ZO-1 at the intercellular borders, paralleled by a decrease in dextran permeability, suggestive of more organized tight junctions (TJs). Spectrofluorometric analysis of CFTR function demonstrated that hAMSC-CFBE co-cultures resumed chloride transport, in line with the appearance of the mature Band C of CFTR protein by Western blotting. Moreover, hAMSC-CFBE co-cultures, at a 1:5 ratio, showed a decrease in fluid absorption, as opposed to CFBE cell monolayers that displayed a great rate of fluid resorption from the apical side. Our data show that human amniotic MSCs can be used in co-culture with CF respiratory epithelial cells to model their engraftment into the airways and have the potential to resume a tight epithelium with partial correction of the CF phenotype. © 2014 The Authors.


PubMed | University of Verona and Cystic Fibrosis Regional Center
Type: Journal Article | Journal: Microbial biotechnology | Year: 2016

Tailored nanoparticles offer a novel approach to fight antibiotic-resistant microorganisms. We analysed biogenic selenium nanoparticles (SeNPs) of bacterial origin to determine their antimicrobial activity against selected pathogens in their planktonic and biofilm states. SeNPs synthesized by Gram-negative Stenotrophomonas maltophilia [Sm-SeNPs(-)] and Gram-positive Bacillus mycoides [Bm-SeNPs(+)] were active at low minimum inhibitory concentrations against a number of clinical isolates of Pseudomonas aeruginosa but did not inhibit clinical isolates of the yeast species Candida albicans and C.parapsilosis. However, the SeNPs were able to inhibit biofilm formation and also to disaggregate the mature glycocalyx in both P.aeruginosa and Candida spp. The Sm-SeNPs(-) and Bm-SeNPs(+) both achieved much stronger antimicrobial effects than synthetic selenium nanoparticles (Ch-SeNPs). Dendritic cells and fibroblasts exposed to Sm-SeNPs(-), Bm-SeNPs(+) and Ch-SeNPs did not show any loss of cell viability, any increase in the release of reactive oxygen species or any significant increase in the secretion of pro-inflammatory and immunostimulatory cytokines. Biogenic SeNPs therefore appear to be reliable candidates for safe medical applications, alone or in association with traditional antibiotics, to inhibit the growth of clinical isolates of P.aeruginosa or to facilitate the penetration of P.aeruginosa and Candida spp. biofilms by antimicrobial agents.

Loading Cystic Fibrosis Regional Center collaborators
Loading Cystic Fibrosis Regional Center collaborators