Entity

Time filter

Source Type


Loizou C.P.,Intercollege | Petroudi S.,University of Cyprus | Pattichis C.S.,University of Cyprus | Pantziaris M.,Cyprus Institute of Neurology and Genetics | And 2 more authors.
Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS | Year: 2012

The degree of stenosis of the common carotid artery (CCA) but also the characteristics of the arterial wall including plaque size, composition and elasticity represent important predictors used in the assessment of the risk for future cardiovascular events. This paper proposes and evaluates an integrated system for the segmentation of atherosclerotic carotid plaque in ultrasound video of the CCA based on normalization, speckle reduction filtering (with the hybrid median filter) and parametric active contours. The algorithm is initialized in the first video frame of the cardiac cycle with human assistance and the moving atherosclerotic plaque borders are tracked and segmented in the subsequent frames. The algorithm is evaluated on 10 real CCA digitized videos from B-mode longitudinal ultrasound segments and is compared with the manual segmentations of an expert, for every 20 frames in a time span of 3-5 seconds, covering in general 2 cardiac cycles. The segmentation results are very satisfactory with a true negative fraction (TNF) of 79.3%, a true-positive fraction (TPF) of 78.12%, a false-positive fraction (FPF) of 6.7% and a false-negative fraction (FNF) of 19.6% between the ground truth and the presented plaque segmentations, a Williams index (KI) of 80.3%, an overlap index of 71.5%, a specificity of 0.88±0.09, a precision of 0.86±0.10 and an effectiveness measure of 0.77±0.09. The results show that integrated system investigated in this study could be successfully used for the automated video segmentation of the carotid plaque. © 2012 IEEE. Source


Loizou C.P.,Intercollege | Petroudi S.,University of Cyprus | Pantziaris M.,Cyprus Institute of Neurology and Genetics | Nicolaides A.N.,Cyprus Cardiovascular Disease Educational Research Trust CDERT | Pattichis C.S.,University of Cyprus
IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control | Year: 2014

The robust border identification of atherosclerotic carotid plaque, the corresponding degree of stenosis of the common carotid artery (CCA), and also the characteristics of the arterial wall, including plaque size, composition, and elasticity, have significant clinical relevance for the assessment of future cardiovascular events. To facilitate the follow-up and analysis of the carotid stenosis in serial clinical investigations, we propose and evaluate an integrated system for the segmentation of atherosclerotic carotid plaque in ultrasound videos of the CCA based on video frame normalization, speckle reduction filtering, M-mode state-based identification, parametric active contours, and snake segmentation. Initially, the cardiac cycle in each video is identified and the video M-mode is generated, thus identifying systolic and diastolic states. The video is then segmented for a time period of at least one full cardiac cycle. The algorithm is initialized in the first video frame of the cardiac cycle, with human assistance if needed, and the moving atherosclerotic plaque borders are tracked and segmented in the subsequent frames. Two different initialization methods are investigated in which initial contours are estimated every 20 video frames. In the first initialization method, the initial snake contour is estimated using morphology operators; in the second initialization method, the Chan-Vese active contour model is used. The performance of the algorithm is evaluated on 43 real CCA digitized videos from B-mode longitudinal ultrasound segments and is compared with the manual segmentations of an expert, available every 20 frames in a time span of 3 to 5 s, covering, in general, 2 cardiac cycles. The segmentation results were very satisfactory, according to the expert objective evaluation, for the two different methods investigated, with true-negative fractions (TNF-specificity) of 83.7 ± 7.6% and 84.3 ± 7.5%; true-positive fractions (TPF-sensitivity) of 85.42 ± 8.1% and 86.1 ± 8.0%; and between the ground truth and the proposed segmentation method, kappa indices (KI) of 84.6% and 85.3% and overlap indices of 74.7% and 75.4%. The segmentation contours were also used to compute the cardiac state identification and radial, longitudinal, and shear strain indices for the CCA wall and plaque between the asymptomatic and symptomatic groups were investigated. The results of this study show that the integrated system investigated in this study can be successfully used for the automated video segmentation of the CCA plaque in ultrasound videos. © 2014 IEEE. Source

Discover hidden collaborations