Time filter

Source Type

San Jose, CA, United States

Cypress Semiconductor Corporation is a Silicon Valley-based semiconductor design and manufacturing company founded by T. J. Rodgers and others from Advanced Micro Devices. It was formed in 1982 with backing by Sevin Rosen and went public in 1986. The company initially focused on the design and development of high speed CMOS SRAMs, EEPROMs, PAL devices, and TTL logic devices. Two years after going public the company switched from the NASDAQ to the New York Stock Exchange. In October 2009, the company announced it would switch its listing to the NASDAQ on November 12, 2009. Its headquarters are in San Jose, California, and it has divisions in the United States, Ireland, India and the Philippines as well as a fabrication plant in Minnesota.Some of its main competitors include Microchip Technology, Integrated Device Technology, Samsung Electronics, and Xilinx. Wikipedia.

A switch circuit and method is described. In one embodiment, the switch circuit is configured to couple each of a plurality of plurality of capacitive sense elements and a plurality of capacitance sensors in different modes. In a first mode, the switch circuit is configured to couple each of the plurality of capacitance sensors to a group of two or more of the plurality of capacitive sense elements. In a second mode, the switch circuit is configured to couple the plurality of capacitance sensors to individual ones of the two or more of the plurality of capacitive sense elements in one of the groups.

Cypress Semiconductor | Date: 2015-03-12

A RFID system includes an RFID controller incorporating a serial bus master coupled via a serial bus to a serial bus slave device, whereby the RFID controller controls power supply and/or power mode of the salve device in order that the slave device is powered and able to communicate with the RFID controller in response to RFID commands received from an RFID reader, and unpowered or in a low power mode otherwise.

Techniques that allow dynamic management of throughput in a memory device based on a power supply voltage are provided. In an example embodiment, a method of operating a memory device comprises monitoring on the power supply level applied to the device and determining a corresponding number of bitlines that the device can activate at the same time, generating a control signal based on the number of bitlines, and using the control signal to activate a portion of the memory device corresponding to the determined number of bitlines.

Techniques for wireless communications are described. In an example embodiment, a method of configuring wireless communication between two devices comprises using two different communication channels each having a different number of timeslots, in which the first channel is used in a first mode, the second channel is used in the second mode, and operation transitions between the first mode and the second mode in accordance with a predetermined characteristic corresponding to the communication between the two devices.

Cypress Semiconductor | Date: 2015-10-22

A method of fabricating a memory device is described. Generally, the method includes: forming on a surface of a substrate a dielectric stack including a tunneling dielectric and a charge-trapping layer overlying the tunneling dielectric; forming a cap layer overlying the dielectric stack, wherein the cap layer comprises a multi-layer cap layer including at least a first cap layer overlying the charge-trapping layer, and a second cap layer overlying the first cap layer; patterning the cap layer and the dielectric stack to form a gate stack of a memory device; removing the second cap layer; and performing an oxidation process to oxidize the first cap layer to form a blocking oxide overlying the charge-trapping layer, wherein the oxidation process consumes the first cap layer. Other embodiments are also described.

Discover hidden collaborations