Saint-Cloud, France
Saint-Cloud, France

Time filter

Source Type

Patent
Institute Curie and Harmonic Pharma | Date: 2015-04-02

The present invention relates to a new class of cephalosporin derivatives of formula (I), notably having CXCR4 receptor antagonist effect, useful as a therapeutic agent for treating cancer, in particular for treating breast cancer, lung cancer and uveal melanoma. The invention further relates to a pharmaceutical composition comprising a compound of formula (I) and an additional antitumor drug for treating cancer.


Patent
Institute Curie and Harmonic Pharma | Date: 2017-02-08

The present invention relates to a new class of cephalosporin derivatives of formula (I), notably having CXCR4 receptor antagonist effect, useful as a therapeutic agent for treating cancer, in particular for treating breast cancer, lung cancer and uveal melanoma. The invention further relates to a pharmaceutical composition comprising a compound of formula (I) and an additional antitumor drug for treating cancer.


Patent
Abivax, French National Center for Scientific Research and Institute Curie | Date: 2017-05-24

The present invention relates to a compound of formula (1) in the form of a base or addition salt with an acid, particularly a pharmaceutically acceptable acid. It further relates to a pharmaceutical composition comprising said compound and at least one pharmaceutically acceptable excipient, to a process for preparing said compound and to a corresponding intermediate compound.


Patent
Institute Curie and French National Center for Scientific Research | Date: 2016-12-28

A microfluidic device for performing physical, chemical or biological treatment to at least one packet without contamination.


Patent
Polyquant GmbH, Biomedical Research Foundation Of The Academy Of Athens, Luxembourg Institute Of Health, Institute Curie, Assistance Publique Hopitaux De Paris and Diagnoswiss SA | Date: 2017-06-28

The invention relates to a collection of signature peptides representing at least 10 proteins for use in cancer diagnosis and/or prognosis, to an artificial protein comprising signature peptides representing at least 10 proteins and to a nucleic acid construct encoding for such an artificial protein. The invention further relates to a collection of at least 10 proteins for use in cancer diagnosis and/or prognosis. Additionally, the invention relates to a method for cancer diagnosis and/or prognosis comprising the step of analyzing at least 10 proteins in a urine sample of a subject. Finally, the invention relates to an immunoassay product comprising antibodies for detecting at least 10 proteins.


Patent
Institute Curie | Date: 2017-03-01

An in vitro method for determining whether a patient has, or is at risk of having or developing an autoimmune disease or for assessing the severity or predicting the outcome of an autoimmune disease, comprising a step of detecting or quantifying in a biological sample obtained from said patient an immune anti-IL2 response, peptides specifically recognised by anti-IL2 antibodies or IL-2-specific T cells of T1D, systemic lupus erythematosus, rheumatoid arthritis, Sjgrens syndrome and autoimmune polymyositis patients, and pharmaceutical compositions.


Patent
Theravectys, Institute Curie and French National Center for Scientific Research | Date: 2017-05-31

The invention relates to the regulated expression of a chimeric antigen receptor (CAR) within a lentiviral vector. The CAR comprises a hook-binding domain that interacts with a hook, preferably encoded by the same lentiviral vector, which prevents proper processing and release of the CAR to the cell membrane. The invention encompasses vectors, methods of making the vectors, and methods of using them, including medicinal uses. The vectors can be used for administration to humans to induce immune responses and to treat cancers and tumors.


Grant
Agency: European Commission | Branch: H2020 | Program: RIA | Phase: PHC-02-2015 | Award Amount: 5.70M | Year: 2016

Despite of their great promise, high-throughput technologies in cancer research have often failed to translate to major therapeutic advances in the clinic. One challenge has been tumour heterogeneity, where multiple competing subclones coexist within a single tumour. Genomic heterogeneity renders it difficult to identify all driving molecular alterations, and thus results in therapies that only target subsets of aggressive tumour cells. Another challenge lies in the integration of multiple types of molecular data into mathematical disease models that can make actionable clinical statements. We aim to develop predictive computational technology that can exploit molecular and clinical data to improve our understanding of disease mechanisms and to inform clinicians about optimized strategies for therapeutic intervention. We propose to focus on prostate cancer, a leading cause of cancer death amongst men in Europe, but also prone to over-treatment. Our approach combines the exploitation of genomic, transcriptomic, proteomic, and clinical data in primary and metastatic tumours, prospective cohorts of well characterized prostate cancer patients, drug screenings in cell lines, and the use of the Watson technology, a last generation cognitive computer developed at IBM. The translational objective of this study is to develop technology for identifying disease mechanisms and produce treatment recommendations for individual patients based on a therapeutic biomarker panel. The proposed software framework will be accessible through a graphical interface that will facilitate its dissemination and use by researchers, clinicians, and biomedical industries. The framework will provide intuitive tools to deposit, share, analyze, and visualize molecular and clinical data; as well as to infer prognosis, elucidate implicated mechanisms and recommend therapy accordingly. This software framework will serve as a proof of concept for future development by industrial partners in Europe.


Grant
Agency: European Commission | Branch: H2020 | Program: RIA | Phase: PHC-14-2015 | Award Amount: 7.97M | Year: 2016

Uveal melanoma (UM) is a rare intraocular tumour with an incidence of 5 cases per million individuals per year. Up to 50% of UM patients develop metastases, most often in the liver, and these are invariably fatal. Despite new discoveries in the genetic and molecular background of the primary tumour, little is known about the metastatic disease; furthermore, there is no therapy to either prevent or treat UM metastases. In UM Cure 2020, we aim to identify and validate at the preclinical level novel therapeutic approaches for the treatment of UM metastases. For this purpose, the consortium brings together the major experts of UM in both patient care and basic/translational/clinical research, as well as patient representatives. An ambitious multidisciplinary approach is proposed to move from patient tissue characterisation to preclinical evaluation of single or combinations of drugs. This approach includes the characterisation of the genetic landscape of metastatic UM and its microenvironment, proteomic studies to address signal pathway deregulation and establishment of novel relevant in vitro and in vivo UM models. We also aim to validate accurate surrogate endpoint biomarkers to evaluate therapies and detect metastases as early as possible. Underpinning this will be the UM Cure 2020 virtual biobank registry, linking existing biobanks into a harmonised network, which will prospectively collect primary and metastatic UM samples. Together, our approach will lead to the identification of new therapies, allowing the initiation of UM-dedicated clinical trials sponsored by academia or pharma. Dissemination of results will include the building of a patient network across the countries as part of the consortium as well as a dedicated UM patient and caregivers data portal as part of the UM Cure 2020 website, in order to increase patient information and disease awareness.


Grant
Agency: European Commission | Branch: H2020 | Program: MSCA-COFUND-DP | Phase: MSCA-COFUND-2014-DP | Award Amount: 5.49M | Year: 2016

The new IC-3i-PhD program of Institut Curie and its partners will produce top-level scientific knowledge by promoting basic interdisciplinary research that will be translated into novel therapeutic avenues for diagnosis and treatment. The completely re-structured, revitalized, and ambitious international Triple i PhD program is strengthened by trans- and inter-disciplinary and inter-sectorial research projects and will offer 35 international PhD positions. The program will teach PhD/Doctoral Program recipients to be excellent researchers of tomorrow; to perform research but also enhance innovation through research via established working relationships with private industry, and by supporting the creation of Small and Medium-sized Enterprises (SMEs). The objective of the doctoral programme is to offer an international, inter-disciplinary, and inter-sectorial training program for the researchers, including training-through-research (both on site and through secondments) as well as hands-on training in transferable skills. Furthermore, supporting researchers career development via a structured career plan, and a commitment to providing fellows with the transferable skills they need, will change the standard of excellence for PhDs at the institute, and beyond. Training IC-3i-PhDs to the high standard set out in the program will ultimately lead to producing a new generation of researchers and researcher-physicians working side by side on improving health outcomes, reducing health inequalities, and promoting active and healthy ageing. Overall the proposed project will further stimulate the development of European research and human resource capacities, knowledge transfer between academic institutions and industrial stakeholders and thus strengthen the competitiveness and innovation of EU industries.

Loading Institute Curie collaborators
Loading Institute Curie collaborators