Time filter

Source Type


Insertional mutagenesis and the inherent risk of malignancy compromise the clinical use of DNA-based therapies. Being a transient copy of genetic material, mRNA is a safe alternative, overcoming this limitation. As a prerequisite for the development of efficient mRNA-based therapies, we investigated the cellular uptake and intracellular fate of mRNA for the first time. To this end we determined cell-type, dose and energy dependence of mRNA internalisation. Moreover, we employed markers for uptake pathways and cellular compartments to analyse the route of mRNA internalisation and its intracellular destination. Finally, we addressed the involvement of receptors and their nature using a competitor-based approach. We found that all cell types tested were amenable to uptake and expression of naked mRNA. Internalisation mainly occurred via caveolae/lipid raft-rich membrane domains and involved scavenger-receptor(s). Following endocytosis, mRNA eventually accumulated in lysosomes, while part of it escaped into the cytosol giving rise to protein synthesis. Taken together, our findings provide unprecedented insights into the internalisation and trafficking of exogenous mRNA, greatly facilitating the development of effective mRNA-based therapies in the future.

The present invention relates to a pharmaceutical composition comprising at least one mRNA comprising at least one coding region for at least one antigen from a tumour, in combination with an aqueous solvent and preferably a cytokine, e.g. GM-CSF, and a process for the preparation of the pharmaceutical composition. The pharmaceutical composition according to the invention is used in particular for therapy and/or prophylaxis against cancer.

The present invention is directed to (the use of) a solution containing at least one nucleic acid (sequence) and free mannose for lyophilization, transfection and/or injection, particularly of RNA and mRNA. The inventive solution exhibits a positive effect on stabilization of the nucleic acid (sequence) during lyophilization and storage but also leads to a considerable increase of the transfection efficiency of a nucleic acid. It thus also increases in vivo expression of a protein encoded by such a nucleic acid upon increased transfection rate. The present invention is furthermore directed to a method of lyophilization using the mannose-containing solution, to pharmaceutical compositions, vaccines, kits, first and second medical uses applying such a mannose-containing solution and/or a nucleic acid (sequence) lyophilized or resuspended with such a solution.

CureVac GmbH | Date: 2013-03-27

The invention relates to an artificial nucleic acid molecule comprising at least one 5UTR element which is derived from a TOP gene, at least one open reading frame and optionally at least one 3UTR element comprising a nucleic acid sequence which is preferably derived from the 3UTR of a gene providing a stable mRNA, such as an albumin gene, or from a variant of the 3UTR of a gene providing a stable mRNA. The invention further relates to the use of such an artificial nucleic acid molecule in gene therapy and/or genetic vaccination.

The present invention is directed to an inventive polymeric carrier molecule according to generic formula (I) and variations thereof, which allows for efficient transfection of nucleic acids into cells in vivo and in vitro, a polymeric carrier cargo complex formed by a nucleic acid and the inventive polymeric carrier molecule, but also to methods of preparation of this inventive polymeric carrier molecule and of the inventive polymeric carrier cargo complex. The present invention also provides methods of application and use of this inventive polymeric carrier molecule and the inventive polymeric carrier cargo complex as a medicament, for the treatment of various diseases, and in the preparation of a pharmaceutical composition for the treatment of such diseases.

Discover hidden collaborations