Entity

Time filter

Source Type

San Francisco, CA, United States

Babyshkina N.,Russian Academy of Medical Sciences | Malinovskaya E.,Russian Academy of Medical Sciences | Nazarenko M.,Russian Academy of Medical Sciences | Koval M.,Russian Academy of Medical Sciences | And 4 more authors.
Gene | Year: 2013

This study aimed to investigate the relationship of ten single nucleotide polymorphisms (SNPs) in the MTHFR, MTR, MTRR, DHFR, MTHFD1, TS, RFC1 and DNMT3b genes with cancer survival, therapeutic response to neoadjuvant chemotherapy and clinicopathological characteristics in 300 pre- and postmenopausal breast cancer patients of a Russian Western Siberian population. We found that the MTHFR 677CT genotype as well as combination of MTHFR 677CT and 677TT genotype was related to tumor size and estrogen-positive status in postmenopausal group. The RFC1 80A{cyrillic} allele was associated with an increased risk of lymph node metastases among postmenopausal women. The MTHFR 677TT genotype was significantly correlated with a better progression-free survival in premenopausal patients. In contrast, a worse outcome was observed in this group patient with MTHFD1 1958AA genotype. In the multivariate analysis, the MTHFD1 1958AA genotype was identified as an independent prognostic factor for premenopausal breast cancer survival. Our findings provide evidence for associations of breast cancer survival with folate-related SNPs in a population of Western Siberian region of Russia and the MTHFD1 (1958G>A) may have additional prognostic value especially among premenopausal patients. © 2013 Elsevier B.V. Source


Moore H.M.,U.S. National Cancer Institute | Kelly A.,Rose Li and Associates Inc. | Jewell S.D.,Van Andel Research Institute | McShane L.M.,U.S. National Cancer Institute | And 15 more authors.
Biopreservation and Biobanking | Year: 2011

Human biospecimens are subject to a number of different collection, processing, and storage factors that can significantly alter their molecular composition and consistency. These biospecimen preanalytical factors, in turn, influence experimental outcomes and the ability to reproduce scientific results. Currently, the extent and type of information specific to the biospecimen preanalytical conditions reported in scientific publications and regulatory submissions varies widely. To improve the quality of research utilizing human tissues, it is critical that information regarding the handling of biospecimens be reported in a thorough, accurate, and standardized manner. The Biospecimen Reporting for Improved Study Quality recommendations outlined herein are intended to apply to any study in which human biospecimens are used. The purpose of reporting these details is to supply others, from researchers to regulators, with more consistent and standardized information to better evaluate, interpret, compare, and reproduce the experimental results. The Biospecimen Reporting for Improved Study Quality guidelines are proposed as an important and timely resource tool to strengthen communication and publications around biospecimen-related research and help reassure patient contributors and the advocacy community that the contributions are valued and respected. © 2011, Mary Ann Liebert, Inc. Source


Trademark
Cureline Inc. | Date: 2015-07-21

Biological tissue, namely, blood, stem cells, bone marrow for scientific and medical research use. Biomedical research services. Tissue bank services; medical services, namely, testing and analysis of human tissues and body fluids for diagnostic and treatment purposes.


Ossovskaya V.,BiPar Sciences | Wang Y.,AltheaDx | Budoff A.,AltheaDx | Xu Q.,AltheaDx | And 5 more authors.
Genes and Cancer | Year: 2011

Triple-negative breast cancer (TNBC) is an aggressive breast cancer subtype with a high rate of proliferation and metastasis, as well as poor prognosis for advanced-stage disease. Although TNBC was previously classified together with basal-like and BRCA1/2-related breast cancers, genomic profiling now shows that there is incomplete overlap, with important distinctions associated with each subtype. The biology of TNBC is still poorly understood; therefore, to define the relative contributions of major cellular pathways in TNBC, we have studied its molecular signature based on analysis of gene expression. Comparisons were then made with normal breast tissue. Our results suggest the existence of molecular networks in TNBC, characterized by explicit alterations in the cell cycle, DNA repair, nucleotide synthesis, metabolic pathways, NF-κB signaling, inflammatory response, and angiogenesis. Moreover, we also characterized TNBC as a cancer of mixed phenotypes, suggesting that TNBC extends beyond the basal-like molecular signature and may constitute an independent subtype of breast cancer. The data provide a new insight into the biology of TNBC. © The Author(s) 2011. Source


Moore H.M.,U.S. National Cancer Institute | Kelly A.B.,Rose Li and Associates Inc. | Jewell S.D.,Van Andel Research Institute | McShane L.M.,U.S. National Cancer Institute | And 15 more authors.
Journal of Proteome Research | Year: 2011

Human biospecimens are subject to a number of different collection, processing, and storage factors that can significantly alter their molecular composition and consistency. These biospecimen preanalytical factors, in turn, influence experimental outcomes and the ability to reproduce scientific results. Currently, the extent and type of information specific to the biospecimen preanalytical conditions reported in scientific publications and regulatory submissions varies widely. To improve the quality of research utilizing human tissues, it is critical that information regarding the handling of biospecimens be reported in a thorough, accurate, and standardized manner. The Biospecimen Reporting for Improved Study Quality (BRISQ) recommendations outlined herein are intended to apply to any study in which human biospecimens are used. The purpose of reporting these details is to supply others, from researchers to regulators, with more consistent and standardized information to better evaluate, interpret, compare, and reproduce the experimental results. The BRISQ guidelines are proposed as an important and timely resource tool to strengthen communication and publications around biospecimen-related research and help reassure patient contributors and the advocacy community that the contributions are valued and respected. © 2011 American Chemical Society. Source

Discover hidden collaborations