ORCHARD PARK, NY, United States

Curefaktor Pharmaceuticals, Llc

www.curefaktor.com
ORCHARD PARK, NY, United States
SEARCH FILTERS
Time filter
Source Type

Gogate P.N.,Roswell Park Cancer Institute | Ethirajan M.,Roswell Park Cancer Institute | Kurenova E.V.,Roswell Park Cancer Institute | Kurenova E.V.,Curefaktor Pharmaceuticals, Llc | And 4 more authors.
European Journal of Medicinal Chemistry | Year: 2014

Focal adhesion kinase (FAK) and vascular endothelial growth factor receptor 3 (VEGFR3) are tyrosine kinases, which function as key modulators of survival and metastasis signals in cancer cells. Previously, we reported that small molecule chlorpyramine hydrochloride (C4) specifically targets the interaction between FAK and VEGFR3 and exhibits anti-tumor efficacy. In this study, we designed and synthesized a series of 1 (C4) analogs on the basis of structure activity relationship and molecular modeling. The resulting new compounds were evaluated for their binding to the FAT domain of FAK and anti-cancer activity. Amongst all tested analogs, compound 29 augmented anti-proliferative activity in multiple cancer cell lines with stronger binding to the FAT domain of FAK and disrupted the FAK-VEGFR3 interaction. In conclusion, we hope that this work will contribute to further studies of more potent and selective FAK-VEGFR3 protein-protein interaction inhibitors. © 2014 Elsevier Masson SAS. All rights reserved.


Kurenova E.,Roswell Park Cancer Institute | Kurenova E.,Curefaktor Pharmaceuticals, Llc | Liao J.,Roswell Park Cancer Institute | He D.-H.,University of Florida | And 6 more authors.
Oncotarget | Year: 2013

Even with successful surgical resection and perioperative chemotherapy and radiation, pancreatic ductal adenocarcinoma (PDA) has a high incidence of recurrence. Tumor cell survival depends on activation of signaling pathways that suppress the apoptotic stimuli of invasion and metastasis. Focal adhesion kinase (FAK) is a critical signaling molecule that has been implicated in tumor cell survival, invasion and metastasis. We have previously shown that FAK and vascular endothelial growth factor receptor 3 (VEGFR-3) are overexpressed in cancer cells and physically interact to confer a significant survival advantage. We subsequently identified a novel small molecule inhibitor C4 that targeted the VEGFR-3-FAK site of interaction. In this study, we have shown that C4 disrupted the FAK-VEGFR-3 complexes in PDA cells. C4 treatment caused dose-dependent dephosphorylation and inactivation of the VEGFR-3 and FAK, reduction in cell viability and proliferation, cell cycle arrest and apoptosis in PDA cells. C4 increased the sensitivity of tumor cells to gemcitabine chemotherapy in vitro that lead to apoptosis at nanomolar concentrations of both drugs. C4 reduced tumor growth in vivo in subcutaneous and orthotopic murine models of PDA. The drug alone at low dose, decreased tumor growth; however, concomitant administration with low dose of gemcitabine had significant synergistic effect and led to 70% tumor reduction. Combination of C4 with gemcitabine had a prolonged cytostatic effect on tumor growth after treatment withdrawal. Finally, we report an anecdotal case of stage IV pancreatic cancer treated with gemcitabine in combination with C4 that showed a significant clinical response in primary tumor and complete clinical response in liver metastasis over an eight month period. Taken together, these results demonstrate that targeting the scaffolding function of FAK with a small-molecule FAK-VEGFR-3 inhibitor can be an effective therapeutic strategy against PDA.


Kurenova E.,Roswell Park Cancer Institute | Kurenova E.,Curefaktor Pharmaceuticals, Llc | Ucar D.,University of Florida | Liao J.,Roswell Park Cancer Institute | And 8 more authors.
Cell Cycle | Year: 2014

Melanoma has the highest mortality rate of all skin cancers and a major cause of treatment failure is drug resistance. Tumors heterogeneity requires novel therapeutic strategies and new drugs targeting multiple pathways. One of the new approaches is targeting the scaffolding function of tumor related proteins such as focal adhesion kinase (FAK). FAK is overexpressed in most solid tumors and is involved in multiple protein-protein interactions critical for tumor cell survival, tumor neovascularization, progression and metastasis. In this study, we investigated the anticancer activity of the FAK scaffold inhibitor C4, targeted to the FAK-VEGFR-3 complex, against melanomas. We compared C4 inhibitory effects in BRAF mutant vs BRAF wild type melanomas. C4 effectively caused melanoma tumor regression in vivo, when administered alone and sensitized tumors to chemotherapy. The most dramatic effect of C4 was related to reduction of vasculature of both BRAF wild type and V600E mutant xenograft tumors. The in vivo effects of C4 were assessed in xenograft models using non-invasive multimodality imaging in conjunction with histologic and molecular biology methods. C4 inhibited cell viability, adhesion and motility of melanoma and endothelial cells, specifically blocked phosphorylation of VEGFR-3 and FAK and disrupted their complexes. Specificity of in vivo effects for C4 were confirmed by a decrease in tumor FAK and VEGFR-3 phosphorylation, reduction of vasculogenesis and reduced blood flow. Our collective observations provide evidence that a small molecule inhibitor targeted to the FAK protein-protein interaction site successfully inhibits melanoma growth through dual targeting of tumor and endothelial cells and is effective against both BRAF wild type and mutant melanomas. © 2014 Taylor & Francis Group, LLC.


Cance W.G.,Roswell Park Cancer Institute | Cance W.G.,State University of New York at Buffalo | Cance W.G.,Curefaktor Pharmaceuticals, Llc | Kurenova E.,Roswell Park Cancer Institute | And 4 more authors.
Science Signaling | Year: 2013

Focal adhesion kinase (FAK) is emerging as a promising cancer target because it is highly expressed at both the transcriptional and translational level in cancer and is involved in many aspects of tumor growth, invasion, and metastasis. Existing FAK-based therapeutics focus on inhibiting the kinase's catalytic function and not the large scaffold it creates that includes many oncogenic receptor tyrosine kinases and tumor suppressor proteins. Targeting the FAK scaffold is a feasible and promising approach for developing highly specific therapeutics that disrupt FAK signaling pathways in cancer. Copyright 2008 by the American Association for the Advancement of Science.


Golubovskaya V.M.,Roswell Park Cancer Institute | Golubovskaya V.M.,Curefaktor Pharmaceuticals, Llc | Cance W.G.,Roswell Park Cancer Institute | Cance W.G.,Curefaktor Pharmaceuticals, Llc | Cance W.G.,State University of New York at Buffalo
Surgical Oncology Clinics of North America | Year: 2013

This article summarizes data on translational studies to target the p53 pathway in cancer. It describes the functions of the p53 and Mdm-2 signaling pathways, and discusses current therapeutic approaches to target p53 pathways, including reactivation of p53. In addition, direct interaction and colocalization of the p53 and focal adhesion kinase proteins in cancer cells have been demonstrated, and different approaches to target this interaction are reviewed. This is a broad review of p53 function as it relates to the diagnosis and treatment of a wide range of cancers. © 2013 Elsevier Inc.


Golubovskaya V.M.,Roswell Park Cancer Institute | Golubovskaya V.M.,Curefaktor Pharmaceuticals, Llc | Huang G.,Roswell Park Cancer Institute | Ho B.,Roswell Park Cancer Institute | And 7 more authors.
Molecular Cancer Therapeutics | Year: 2013

Malignant gliomas are characterized by aggressive tumor growth with a mean survival of 15 to 18 months and frequently developed resistance to temozolomide. Therefore, strategies that sensitize glioma cells to temozolomide have a high translational impact. We have studied focal adhesion kinase (FAK), a tyrosine kinase and emerging therapeutic target that is known to be highly expressed and activated in glioma. In this report, we tested the FAK autophosphorylation inhibitor, Y15, in DBTRG and U87 glioblastoma cells. Y15 significantly decreased viability and clonogenicity in a dose-dependent manner, increased detachment in a dose- and time-dependent manner, caused apoptosis, and inhibited cell invasion in both cell lines. In addition, Y15 treatment decreased autophosphorylation of FAK in a dose-dependent manner and changed cell morphology by causing cell rounding in DBTRG and U87 cells. Administration of Y15 significantly decreased subcutaneous DBTRG tumor growth with decreased Y397-FAK autophosphorylation, activated caspase-3 and PARP. Y15 was administered in an orthotopic glioma model, leading to an increase in mouse survival. The combination of Y15 with temozolomide was more effective than either agent alone in decreasing viability and activating caspase-8 in DBTRG and U87 cells in vitro. In addition, the combination of Y15 and temozolomide synergistically blocked U87 brain tumor growth in vivo. Thus, pharmacologic blockade of FAK autophosphorylation with the oral administration of a small-molecule inhibitor Y15 has a potential to be an effective therapy approach for glioblastoma either alone or in combination with chemotherapy agents such as temozolomide. © 2012 American Association for Cancer Research.


Huang G.,Roswell Park Cancer Institute | Ho B.,Roswell Park Cancer Institute | Conroy J.,Roswell Park Cancer Institute | Liu S.,Roswell Park Cancer Institute | And 3 more authors.
Anti-Cancer Agents in Medicinal Chemistry | Year: 2014

Focal adhesion is known to be highly expressed and activated in glioma cells. Recently, we demonstrated that FAK autophosphorylation inhibitor, Y15 significantly decreased tumor growth of DBTRG and U87 cells, especially in combination with temozolomide. In the present report, we performed gene expression analysis in these cells to reveal genes affected by Y15, temozolomide and combination of Y15 and temozolomide. We tested the effect of Y15 on gene expression by Illumina Human HT12v4 microarray assay and detected 8087 and 6555 genes, which were significantly either up- or down-regulated by Y15-treatment in DBTRG and U87 cells, respectively (p<0.05). Moreover, DBTRG and U87 cells treated with Y15 changed expression of 1332 and 462 genes more than 1.5 fold, p<0.05, respectively and had 237 common genes affected by Y15. The common genes up-regulated by Y15 included GADD45A, HSPA6 (heat-shock 70); DUSP1, DUSP 5 (dual-phosphatase 5); CDKN1A (p21) and common down-regulated genes included kinesins, such as KIF11, 14, 20A, 20B; topoisomerase II, TOP2A; cyclin F; cell cycle protein: BUB1; PARP1, POLA1. In addition, we detected genes affected by temozolomide and by combination of Y15 and temozolomide treatment in U87 cells. Among genes up-regulated by Y15 and temozolomide more significantly than by each agent alone were: COX7B; interferon, gamma-inducible transcript: IFI16; DDIT4; GADD45G and down-regulated: KIF3A, AKT1; ABL; JAK1, GLI3 and ALDH1A3. Thus, microarray gene expression analysis can be effective in establishing genes affected in response to FAK inhibitor alone and in response to combination of Y15 with temozolomide that is important for glioblastoma therapy. © 2014 Bentham Science Publishers.


Gogate P.N.,Roswell Park Cancer Institute | Kurenova E.V.,Roswell Park Cancer Institute | Kurenova E.V.,Curefaktor Pharmaceuticals, Llc | Ethirajan M.,Roswell Park Cancer Institute | And 6 more authors.
Cancer Letters | Year: 2014

Preliminary studies in our laboratory have demonstrated the importance of both the NH2 and COOH terminus scaffolding functions of focal adhesion kinase (FAK). Here, we describe a new small molecule inhibitor, C10, that targets the FAK C-terminus scaffold. C10 showed marked selectivity for cells overexpressing VEGFR3 when tested in isogenic cell lines, MCF7 and MCF7-VEGFR3. C10 preferentially inhibited pancreatic tumor growth in vivo in cells with high FAK-Y925 and VEGFR3 expression. Treatment with C10 led to a significant inhibition in endothelial cell proliferation and tumor endothelial and lymphatic vessel density and decrease in interstitial fluid pressure. These results highlight the underlying importance of targeting the FAK scaffold to treat human cancers. © 2014 Elsevier Ireland Ltd.


Golubovskaya V.M.,Roswell Park Cancer Institute | Golubovskaya V.M.,Curefaktor Pharmaceuticals, Llc | Sumbler B.,Roswell Park Cancer Institute | Ho B.,Roswell Park Cancer Institute | And 3 more authors.
Anti-Cancer Agents in Medicinal Chemistry | Year: 2014

Focal Adhesion Kinase is a 125 kDa non-receptor kinase and overexpressed in many types of tumors. Recently, short noncoding RNAs, called microRNAs have been discovered as regulators of gene expression mainly through binding to the untranslated region (UTR) of mRNA. In this report we show that MiR-138 and MiR-135 down-regulated FAK expression in cancer cells. MiR-138 and MiR-135 inhibited FAK protein expression in different cancer cell lines. The computer analysis of 3'FAK-untranslated region (FAK-UTR) identified one conserved MiR-138 binding site (CACCAGCA) at positions 3514-3521 and one conserved MiR-135 (AAGCCAU) binding site at positions 4278-4284 in the FAK-UTR. By a dual-luciferase assay we demonstrate that MiR-138 and MiR-135 directly bound the FAK untranslated region using FAK-UTR-Target (FAK-UTR) luciferase plasmid and inhibited its luciferase activity. The site-directed mutagenesis of the MiR-138 and MiR-135 binding sites in the FAK-UTR abrogated MiR-138 and MiR-135-directed inhibition of FAK-UTR. Real-time PCR demonstrated that cells transfected with MiR-138 and MiR-135 expressed decreased FAK mRNA levels. Moreover, stable expression of MiR-138 and MiR-135 in 293 and HeLa cells decreased cell invasion and increased sensitivity to 5-fluorouracil (5-FU), FAK inhibitor, Y15, and doxorubicin. In addition, MiR-138 significantly decreased 293 xenograft tumor growth in vivo. This is the first report on regulation of FAK expression by MiR-135 and MiR138 that affected invasion, drug sensitivity, and tumor growth in cancer cells, which is important to the development of FAK-targeted therapeutics and understanding their novel regulations and functions. © 2014 Bentham Science Publishers.


Grant
Agency: Department of Health and Human Services | Branch: | Program: STTR | Phase: Phase I | Award Amount: 219.53K | Year: 2014

DESCRIPTION (provided by applicant): Due to the absence of effective therapies, pancreatic cancer is the fourth leading cause of cancer deaths in both men and women. This study focuses on the development of new small molecule inhibitors targeting Focal Adhesion Kinase against pancreatic cancer. Focal Adhesion Kinase (FAK) has been shown to play an important role in tumor cell survival, including pancreatic cancer, making FAK an excellent target for anti- cancer therapy. Recently, a novel small molecule autophosphorylation FAK inhibitor (1,2,4,5- Benzenetetraamine tetrahydrochloride) called Y15 has been developed by our group that directly and specifically decreased FAK autophosphorylation in vitro and significantly inhibited pancreatic tumor growth in vivo.Y15 inhibitor has a novel mechanism of action; its advantage over existing therapeutic approaches is that that it targets the autophosphorylation site (Y397) of FAK. Y15 is highly specific and non-toxic. The objective of the proposal is to synthesize

Loading Curefaktor Pharmaceuticals, Llc collaborators
Loading Curefaktor Pharmaceuticals, Llc collaborators