Time filter

Source Type

LEIDEN, Netherlands

Agency: Cordis | Branch: FP7 | Program: CP-FP | Phase: NMP-2008-2.1-1 | Award Amount: 5.21M | Year: 2009

The aim of SELFMEM is to develop innovation in the field of nanoporous membranes. This will be achieved by taking advantage of the self-assembly properties of block copolymers leading to highly porous membranes with adjustable, regular-sized pores of tailored functionalities. Both polymeric and inorganic (silicon) membranes will be developed. In the case of isoporous polymeric membranes focus will be laid on the formation of integral-asymmetric block copolymer membranes with an isoporous top layer as a function of the block copolymer structure and the preparation conditions. Isoporous inorganic membranes will be prepared by using a thin block copolymer film as a mask for selective etching. The possibilities to systematically vary the pore size and density by varying the block copolymer mask structure will be investigated. The block copolymers will be synthesized by controlled polymerisation techniques (anionic, group transfer, and different radical polymerisations), depending on the chosen monomers. The characterisation during and after formation of the membranes will be carried out by light and various x-ray scattering techniques, by scanning force microscopy, and by different electron microscopic techniques. Both types of membranes will be post-functionalized in order to tune their final properties. The membranes will be tested for their applicability in different areas. Separation of gases (like H2/CO2) and proteins as well as water purification will be addressed in this project. Modeling and theory will support the understanding of the structure formation of these membranes and help to optimise membrane design. The results of SELFMEM will increase European competitiveness in strategic markets such as gas purification, water treatment and molecular biology. The consortium consists of 12 partners from 10 countries, including 4 companies from 3 countries.

Agency: Cordis | Branch: FP7 | Program: CP-FP | Phase: NMP-2007-2.5-2 | Award Amount: 5.04M | Year: 2008

The practice of adding micron sized inorganic filler particles to reinforce polymeric materials can be traced back to the early years of the composite industry. With synthetic methods that can produce nanometer sized fillers, resulting in an enormous increase of surface area, polymers reinforced with nanoscale particles should show vastly improved properties. Yet, experimental evidence suggests that a simple extrapolation of the design paradigms of conventional composites cannot be used to predict the be-havior of nanocomposites. The origin of these differences between conventional and nanocomposites is still unknown. This, unfortunately, precludes yet any rational design.Though some property improvements have been achieved in nanocomposites, nanoparticle dispersion is difficult to control, with both thermodynamic and kinetic processes playing significant roles. It has been demonstrated that dispersed spherical nanoparticles can yield a range of multi-functional behavior, including a viscosity decrease, reduction of thermal deg-radation, increased mechanical damping, enriched electrical and/or magnetic performance and control of thermomechanical properties. Especially the decrease in viscosity is advantageous for injection-molding op-erations. Facile tuning of nanocomposite Tg could thus allow us to control the usable temperature range of these materials. Again, the physics under-pinning this behavior remains unresolved, primarily due to the poor understanding of the effects that particle/matrix interactions have on the composite behavior. This project aims at overcoming these deficiencies by a twofold strategy. This project will bring together a critical mass of scientists, from atomistic to finite-element modeling. The goal is to develop, implement and validate multi-scale methods to compute the mechanical, thermochemical and flow behav-iour of nano-filled polymeric materials based on the chemistry of selected model systems.

Agency: Cordis | Branch: FP7 | Program: CP | Phase: ENV.2011.3.1.9-1 | Award Amount: 4.77M | Year: 2012

Within the FP7 PEOPLE project (Blue4Glue), Fraunhofer Institute (IFAM) and Procter and Gamble discovered a (PPO based) enzymatic process used by marine-organisms, which produce polymers in a much simpler way (less process steps) than industry does in classical chemistry. BIO-MIMETIC aims to transfer this new scientific knowledge into a blueprint for a novel (pre-)industrial enzymatic-based bio-polymerization process. It involves research partners (IFAM and UNITOV) with experience in enzymatic transformation and bio-based synthetic polymers, as well as expert SMEs such as Dyadic (enzymes), CIMV (biomass transformation into bio-chemistry) and CULGI (computational modeling of bio-chemical processes) to develop the process that firstly transforms biomass (lignin) into new bio-based polymers (pseudo peptides). These will used to create respectively: 1) Bioconjugated copolymers, that will be tested in detergents (by P&G) 2) Bio-cross-linked adhesive gels, to be experimented in antiageing cosmetics and in bio-textiles preparation (by an SME cosmetic producer MAVI). Potential environmental benefits are over 124 kton/yr less toxic solvents to produce chemicals, over 1 Billion kWh of energy savings (room temperature process) and a drastically reduced CO2 footprint i.e. replace 8000 Mtons of petrochemical based deposition aides and in the future substitute a large amount of phenol and phenolic derivatives, which are used to produce chemical intermediates for a myriad of applications. BIO-MIMETIC will carry out LCA and LCC (cost) assessments over the value chain as input to business plan and will use a new SME LCA tool (cCALC) to develop an LCA showcase, which will come available for SMEs. The cCALC tool and showcase will be freely downloadable as part of the exploitation plan targeted at the market uptake of project results in the emerging European market of bio-based products, projected to grow towards 250 billion Euro by 2020.

Discover hidden collaborations