Entity

Time filter

Source Type


Del Rio L.A.,CSIC - Experimental Station of El Zaidin
Journal of Experimental Botany | Year: 2015

The production of reactive oxygen species (ROS) is the unavoidable consequence of aerobic life. ROS is a collective term that includes both oxygen radicals, like superoxide (O2.-) and hydroxyl (.OH) radicals, and other non-radicals such as hydrogen peroxide (H2O2), singlet oxygen (1O2 or 1Δg), etc. In plants, ROS are produced in different cell compartments and are oxidizing species, particularly hydroxyl radicals and singlet oxygen, that can produce serious damage in biological systems (oxidative stress). However, plant cells also have an array of antioxidants which, normally, can scavenge the excess oxidants produced and so avoid deleterious effects on the plant cell bio-molecules. The concept of 'oxidative stress' was re-evaluated in recent years and the term 'oxidative signalling' was created. This means that ROS production, apart from being a potentially harmful process, is also an important component of the signalling network that plants use for their development and for responding to environmental challenges. It is known that ROS play an important role regulating numerous biological processes such as growth, development, response to biotic and environmental stresses, and programmed cell death. The term reactive nitrogen species (RNS) includes radicals like nitric oxide (NO.) and nitric dioxide (NO2.), as well as non-radicals such as nitrous acid (HNO2) and dinitrogen tetroxide (N2O4), among others. RNS are also produced in plants although the generating systems have still not been fully characterized. Nitric oxide (NO.) has an important function as a key signalling molecule in plant growth, development, and senescence, and RNS, like ROS, also play an important role as signalling molecules in the response to environmental (abiotic) stress. Similarly, NO. is a key mediator, in co-operation with ROS, in the defence response to pathogen attacks in plants. ROS and RNS have been demonstrated to have an increasingly important role in biology and medicine. © The Author 2015. Source


Lopez-Huertas E.,CSIC - Experimental Station of El Zaidin
Pharmacological Research | Year: 2010

Substitution of dietary saturated fat by oleic acid and/or polyunsaturated fatty acids (PUFA) has been described to reduce the cardiovascular risk by reducing blood lipids, mainly cholesterol. Additional benefits have been described for long chain omega-3 PUFA (eicosapentaenoic acid-EPA and docosahexaenoic acid-DHA) from fish oils. In recent years, food technology has been used to produce dairy drinks with a reduced content of saturated fat in favour of those fatty acids, most of them claiming cardiovascular benefits. This review summarises all the scientific evidence regarding the effects of milks enriched with long chain omega-3 PUFA (EPA + DHA) and/or oleic acid on cardiovascular health. Nine controlled intervention studies with enriched milks have reported effects on healthy volunteers, subjects with increased risk factors and cardiovascular patients. The main effects observed were reductions of blood lipids, mainly cholesterol, LDL-cholesterol and triglycerides. © 2009 Elsevier Ltd. All rights reserved. Source


Del Rio L.A.,CSIC - Experimental Station of El Zaidin
Antioxidants & redox signaling | Year: 2011

Dr. Christine Foyer (B.Sc. 1974; Ph.D. 1977) is recognized here as a Redox Pioneer because she has published an article on redox biology that has been cited more than 1000 times, 4 other articles that have been cited more than 500 times, and a further 32 articles that have been each cited more than 100 times. During her Ph.D. at the Kings College, University of London, United Kingdom, Dr. Foyer discovered that ascorbate and glutathione and enzymes linking NADPH, glutathione, and ascorbate are localized in isolated chloroplast preparations. These observations pioneered the discovery of the ascorbate-glutathione cycle, now known as Foyer-Halliwell-Asada pathway after the names of the three major contributors, a crucial mechanism for H(2)O(2) metabolism in both animals and plants. Dr. Foyer has made a very significant contribution to our current understanding of the crucial roles of ascorbate and glutathione in redox biology, particularly in relation to photosynthesis, respiration, and chloroplast and mitochondrial redox signaling networks. "My view is that science...is compulsive and you have to keep with it all the time and not get despondent when things do not work well. Being passionate about science is what carries you through the hard times so that it isn't so much work, as a hobby that you do for a living. It is the thrill of achieving a better understanding and finding real pleasure in putting new ideas together, explaining data and passing on knowledge that keeps you going no matter what!" --Prof. Christine Helen Foyer. Source


Krell T.,CSIC - Experimental Station of El Zaidin
Molecular Microbiology | Year: 2015

Signal transduction processes are typically initiated by the interaction of signal molecules with sensor domains. The current lack of information on the signal molecules that feed into regulatory circuits forms a major bottleneck that hampers the understanding of regulatory processes. McKellar etal. report a high-throughput approach for the identification of signal molecules, which is based on thermal shift assays of recombinant sensor domains in the absence and presence of compounds from commercially available ligand collections. Initial binding studies with the sensor domain of the PctA chemoreceptor of Pseudomonas aeruginosa showed a close match between thermal shift assay results and microcalorimetric studies reported previously. Using thermal shift assays the authors then identify signals that bind to three chemoreceptors of the kiwifruit pathogen P. syringae pv. ActinidiaeNZ-V13. Microcalorimetric binding studies and chemotaxis assays have validated the relevance of these ligands. The power of this technique lies in the combination of a high-throughput analytical tool with commercially available compound collections. The approach reported is universal since it can be employed to identify signal molecules to any type of sensor domain. There is no doubt that this technique will facilitate the identification of many signal molecules in future years. The lack of knowledge about the nature of signal molecules is currently a major bottleneck in the field of signal transduction research. In this issue McKellar et al. report a high-throughput approach for the identification of signal molecules, which is based on thermal shift assays of recombinant sensor domains in the absence and presence of compounds from commercially available ligand collections. The approach reported is universal and can be employed to identify signal molecules to any type of sensor domain. © 2015 John Wiley & Sons Ltd. Source


Lopez-Huertas E.,CSIC - Experimental Station of El Zaidin
British Journal of Nutrition | Year: 2012

Metabolic syndrome (MS) is characterised by accumulation of CVD risk factors. The use of very long chain n-3 polyunsaturated fatty acids (VLC n3 PUFA) could potentially benefit MS by reducing risk factors. To better understand the possible VLC n3 PUFA benefits, the literature was systematically reviewed for randomised controlled trials (RCT) that published effects of VLC n3 PUFA on MS patients. 17 RCT fulfilled the inclusion criteria and were analysed for relevance to the research question. The available RCT convincingly show that the administration of VLC n3 PUFA doses > 1 g for at least 3 months produces a significant reduction of triglycerides ranging from 7 % to 25 %. These results confirm the hypotriglyceridemic effect of VLC n3 PUFA in MS patients. The triglyceride lowering may produce further benefits by reducing the % of pro-atherogenic small dense LDL particles (sdLDL) and also perhaps by ameliorating the inflammatory process associated with MS. High doses of VLC n3 PUFA ( ≥ 3 g/day) may produce further TAG reductions but could raise other risk factors such as LDL-C. No clear effects were found on other MS markers. The combination of VLC n3 PUFA plus a statin may be useful to prevent the occurrence of coronary events. More studies are needed using different amounts of VLC n3 PUFA, time lengths, dietary backgrounds and different profiles of MS patients before clear recommendations can be made. © 2012 The Authors. Source

Discover hidden collaborations