Entity

Time filter

Source Type

Seoul, South Korea

Jeong H.W.,Seoul National University | Lee J.-W.,Seoul National University | Kim W.S.,Seoul National University | Choe S.S.,Seoul National University | And 15 more authors.
Molecular Pharmacology | Year: 2010

Activation of peroxisome proliferator-activated receptors (PPARs) have been implicated in the treatment of metabolic disorders with different mechanisms; PPARα agonists promote fatty acid oxidation and reduce hyperlipidemia, whereas PPARγ agonists regulate lipid redistribution from visceral fat to subcutaneous fat and enhance insulin sensitivity. To achieve combined benefits from activated PPARs on lipid metabolism and insulin sensitivity, a number of PPARα/γ dual agonists have been developed. However, several adverse effects such as weight gain and organ failure of PPARα/γ dual agonists have been reported. By use of virtual ligand screening, we identified and characterized a novel PPARα/γ dual agonist, (R)-1-(4-(2-(5- methyl-2-p-tolyloxazol-4-yl)ethoxy)benzyl)piperidine-2-carboxylic acid (CG301360), exhibiting the improvement in insulin sensitivity and lipid metabolism. CG301360 selectively stimulated transcriptional activities of PPARα and PPARγ and induced expression of their target genes in a PPARα- and PPARγ-dependent manner. In cultured cells, CG301360 enhanced fatty acid oxidation and glucose uptake and it reduced pro-inflammatory gene expression. In db/db mice, CG301360 also restored insulin sensitivity and lipid homeostasis. Collectively, these data suggest that CG301360 would be a novel PPARα/γagonist, which might be a potential lead compound to develop against insulin resistance and hyperlipidemia. Copyright © 2010 The American Society for Pharmacology and Experimental Therapeutics. Source


Non-steroidal anti-inflammatory drugs (NSAIDs) have been suggested as the potential new class of preventive or therapeutic antitumor agents. The aim of the present study was to evaluate the antitumor activity of the novel NSAID, CG100649. CG100649 is a novel NSAID dual inhibitor for COX-2 and carbonic anhydrase (CA)-I/-II. In the present study, we investigated the alternative mechanism by which CG100649 mediated suppression of the colon cancer growth and development. The anchorage-dependent and -independent clonogenic assay showed that CG100649 inhibited the clonogenicity of human colon cancer cells. The flow cytometric analysis showed that CG100649 induced the G2/M cell cycle arrest in colon cancer cells. Animal studies showed that CG100649 inhibited the tumor growth in colon cancer xenograft in nude mice. Furthermore, quantitative PCR and FACS analysis demonstrated that CG100649 upregulated the expression of TNF-related apoptosis-inducing ligand (TRAIL) receptors (DR4 and DR5) but decreased the expression of decoy receptors (DcR1 and DcR2) in colon cancer cells. The results showed that CG100649 treatment sensitized TRAIL-mediated growth suppression and apoptotic cell death. The combination treatment resulted in significant repression of the intestinal polyp formation in APCmin/+ mice. Our data clearly demonstrated that CG100649 contains preventive and therapeutic activity for colon cancer. The present study may be useful for identification of the potential benefit of the NSAID CG100649, for the achievement of a better treatment response in colon cancer. Source


Choi B.-S.,Korea National Institute of Health | Lee H.S.,Korea National Institute of Health | Oh Y.-T.,Korea National Institute of Health | Hyun Y.-L.,Crystal Genomics | And 3 more authors.
AIDS | Year: 2010

Histone deacetylase plays an important role in HIV latency. Novel histone deacetylase inhibitors, CG05 and CG06, were evaluated for their roles in HIV latency using ACH2 cells. Both inhibitors were highly efficient in reactivation of provirus and exerted lesser toxicity compared with other known histone deacetylase inhibitors. Histone acetylation increased when proviruses were reactivated by the compounds. These new inhibitors may contribute to the reduction of the HIV reservoir when used in conjunction with highly active antiretroviral therapy. © 2010 Wolters Kluwer Health | Lippincott Williams & Wilkins. Source


Jeong H.W.,Seoul National University | Lee J.-W.,Seoul National University | Kim W.S.,Seoul National University | Choe S.S.,Seoul National University | And 15 more authors.
Diabetes | Year: 2011

OBJECTIVE - Peroxisome proliferator-activated receptor (PPAR)-α/ γ dual agonists have been developed to alleviate metabolic disorders. However, several PPARα/γ dual agonists are accompanied with unwanted side effects, including body weight gain, edema, and tissue failure. This study investigated the effects of a novel PPARα/γ dual agonist, CG301269, on metabolic disorders both in vitro and in vivo. RESEARCH DESIGN AND METHODS - Function of CG301269 as a PPARα/γ dual agonist was assessed in vitro by luciferase reporter assay, mammalian one-hybrid assay, and analyses of PPAR target genes. In vitro profiles on fatty acid oxidation and inflammatory responses were acquired by fatty acid oxidation assay and quantitative (q)RT-PCR of proinflammatory genes. In vivo effect of CG301269 was examined in db/db mice. Total body weight and various tissue weights were measured, and hepatic lipid profiles were analyzed. Systemic glucose and insulin tolerance were measured, and the in vivo effect of CG301269 on metabolic genes and proinflammatory genes was examined by qRT-PCR. RESULTS - CG301269 selectively stimulated the transcriptional activities of PPARα and PPARγ. CG301269 enhanced fatty acid oxidation in vitro and ameliorated insulin resistance and hyperlipidemia in vivo. In db/db mice, CG301269 reduced inflammatory responses and fatty liver, without body weight gain. CONCLUSIONS - We demonstrate that CG301269 exhibits beneficial effects on glucose and lipid metabolism by simultaneous activation of both PPARα and PPARγ. Our data suggest that CG301269 would be a potential lead compound against obesity and related metabolic disorders. © 2011 by the American Diabetes Association. Source

Discover hidden collaborations