Time filter

Source Type

Westwood, CA, United States

Barnard E.,Crump Institute for Molecular Imaging | Li H.,U.S. Department of Energy
Journal of Physiology

The skin is the largest organ in the human body and provides the first line of defence against environmental attack and pathogen invasion. It harbor multiple commensal microbial communities at different body sites, which play important roles in sensing the environment, protecting against colonization and infection of pathogens, and guiding the host immune system in response to foreign invasions. The skin microbiome is largely variable between individuals and body sites, with several core commensal members commonly shared among individuals at the healthy state. These microbial commensals are essential to skin health and can potentially lead to disease when their abundances and activities change due to alterations in the environment or in the host. While recent advances in sequencing technologies have enabled a large number of studies to characterize the taxonomic composition of the skin microbiome at various body sites and under different physiological conditions, we have limited understanding of the microbiome composition and dynamics at the strain level, which is highly important to many microbe-related diseases. Functional studies of the skin microbial communities and the interactions among community members and with the host are currently scant, warranting future investigations. In this review, we summarize the recent findings on the skin microbiome, highlighting the roles of the major commensals, including bacteria, fungi and bacteriophages, in modulating skin functions in health and disease. Functional studies of the skin microbiota at the metatranscriptomic and proteomic levels are also included to illustrate the interactions between the microbiota and the host skin. Journal compilation © 2016 The Physiological Society. Source

Tavare R.,Crump Institute for Molecular Imaging | Wu W.H.,Crump Institute for Molecular Imaging | Zettlitz K.A.,Crump Institute for Molecular Imaging | Salazar F.B.,Crump Institute for Molecular Imaging | And 3 more authors.
Protein Engineering, Design and Selection

Activated leukocyte cell adhesion molecule (ALCAM) is an immunoglobulin superfamily cell adhesion molecule that is aberrantly expressed in a wide variety of human tumors, including melanoma, prostate cancer, breast cancer, colorectal carcinoma, bladder cancer and pancreatic adenocarcinoma. This wide spectrum of human malignancies makes ALCAM a prospective pan-cancer immunoPET target to aid in detection and diagnosis in multiple malignancies. In this study, we assess site-specific versus non-site-specific conjugation strategies for 64Cu-DOTA (1,4,7,10-tetraazacyclo-dodecane-1,4,7,10-tetraacetic acid) immunoPET imaging of a fully human ALCAM cys-diabody (cDb) with a reduced linker length that retains its bivalent binding ability. ALCAM constructs with linker lengths of eight, five and three amino acids were produced to make true non-covalent site-specifically modified cDbs. Characterization by gel electrophoresis, size exclusion chromatography, flow cytometry and mass spectrometry of the various constructs was performed. To demonstrate the increased utility of targeting multiple malignancies expressing ALCAM, we compare the targeting of the site-specific versus non-site-specific conjugated cDbs to the human colorectal cancer xenograft LS174T. Interestingly, the conjugation strategy not only affects tumor targeting but also hepatic and renal uptake/clearance. © The Author 2014. Published by Oxford University Press. All rights reserved. Source

Koya R.C.,Roswell Park Cancer Institute | Tsui C.,University of California at Los Angeles | Robert L.,University of California at Los Angeles | Wu L.,Institute for Molecular Medicine | And 8 more authors.
Cancer Research

Colony stimulating factor 1 (CSF-1) recruits tumor-infiltrating myeloid cells (TIM) that suppress tumor immunity, including M2 macrophages and myeloid-derived suppressor cells (MDSC). The CSF-1 receptor (CSF-1R) is a tyrosine kinase that is targetable by small molecule inhibitors such as PLX3397. In this study, we used a syngeneic mouse model of BRAFV600E-driven melanoma to evaluate the ability of PLX3397 to improve the efficacy of adoptive cell therapy (ACT). In this model, we found that combined treatment produced superior antitumor responses compared with single treatments. In mice receiving the combined treatment, a dramatic reduction of TIMs and a skewing of MHCII low to MHCIIhi macrophages were observed. Furthermore, mice receiving the combined treatment exhibited an increase in tumor-infiltrating lymphocytes (TIL) and T cells, as revealed by real-time imaging in vivo. In support of these observations, TILs from these mice released higher levels of IFN-γ. In conclusion, CSF-1R blockade with PLX3397 improved the efficacy of ACT immunotherapy by inhibiting the intratumoral accumulation of immunosuppressive macrophages. © 2014 American Association for Cancer Research. Source

Koya R.C.,Crump Institute for Molecular Imaging | Koya R.C.,University of California at Los Angeles | Mok S.,Crump Institute for Molecular Imaging | Otte N.,Crump Institute for Molecular Imaging | And 11 more authors.
Cancer Research

Combining immunotherapy with targeted therapy blocking oncogenic BRAF V600 may result in improved treatments for advanced melanoma. In this study, we developed a BRAFV600E-driven murine model of melanoma, SM1, which is syngeneic to fully immunocompetent mice. SM1 cells exposed to the BRAF inhibitor vemurafenib (PLX4032) showed partial in vitro and in vivo sensitivity resulting from the inhibition of MAPK pathway signaling. Combined treatment of vemurafenib plus adoptive cell transfer therapy with lymphocytes genetically modified with a T-cell receptor (TCR) recognizing chicken ovalbumin (OVA) expressed by SM1-OVA tumors or pmel-1 TCR transgenic lymphocytes recognizing gp100 endogenously expressed by SM1 resulted in superior antitumor responses compared with either therapy alone. T-cell analysis showed that vemurafenib did not significantly alter the expansion, distribution, or tumor accumulation of the adoptively transferred cells. However, vemurafenib paradoxically increased mitogen-activated protein kinase (MAPK) signaling, in vivo cytotoxic activity, and intratumoral cytokine secretion by adoptively transferred cells. Taken together, our findings, derived from 2 independent models combining BRAF-targeted therapy with immunotherapy, support the testing of this therapeutic combination in patients with BRAFV600 mutant metastatic melanoma. ©2012 AACR. Source

Fitz-Gibbon S.,Crump Institute for Molecular Imaging | Tomida S.,Crump Institute for Molecular Imaging | Chiu B.-H.,Crump Institute for Molecular Imaging | Nguyen L.,Crump Institute for Molecular Imaging | And 14 more authors.
Journal of Investigative Dermatology

The human skin microbiome has important roles in skin health and disease. However, bacterial population structure and diversity at the strain level is poorly understood. We compared the skin microbiome at the strain level and genome level of Propionibacterium acnes, a dominant skin commensal, between 49 acne patients and 52 healthy individuals by sampling the pilosebaceous units on their noses. Metagenomic analysis demonstrated that although the relative abundances of P. acnes were similar, the strain population structures were significantly different in the two cohorts. Certain strains were highly associated with acne, and other strains were enriched in healthy skin. By sequencing 66 previously unreported P. acnes strains and comparing 71 P. acnes genomes, we identified potential genetic determinants of various P. acnes strains in association with acne or health. Our analysis suggests that acquired DNA sequences and bacterial immune elements may have roles in determining virulence properties of P. acnes strains, and some could be future targets for therapeutic interventions. This study demonstrates a previously unreported paradigm of commensal strain populations that could explain the pathogenesis of human diseases. It underscores the importance of strain-level analysis of the human microbiome to define the role of commensals in health and disease. © 2013 The Society for Investigative Dermatology. Source

Discover hidden collaborations