Time filter

Source Type

Port Glasgow, United Kingdom

Kammerer U.,University of Wurzburg | Gires O.,Ludwig Maximilians University of Munich | Pfetzer N.,University of Wurzburg | Pfetzer N.,CRUK Beatson Institute | And 3 more authors.
BMC Cancer

Background: Overexpression of transketolase-like 1 protein TKTL1 in cancer cells has been reported to correlate with enhanced glycolysis and lactic acid production. Furthermore, enhanced TKTL1 expression was put into context with resistance to chemotherapy and ionizing radiation. Here, a panel of human malign and benign cells, which cover a broad range of chemotherapy and radiation resistance as well as reliance on glucose metabolism, was analyzed in vitro for TKTL1 expression. Methods: 17 malign and three benign cell lines were characterized according to their expression of TKTL1 on the protein level with three commercially available anti-TKTL1 antibodies utilizing immunohistochemistry and Western blot, as well as on mRNA level with three published primer pairs for RT-qPCR. Furthermore, sensitivities to paclitaxel, cisplatin and ionizing radiation were assessed in cell survival assays. Glucose consumption and lactate production were quantified as surrogates for the "Warburg effect". Results: Considerable amounts of tktl1 mRNA and TKTL1 protein were detected only upon stable transfection of the human embryonic kidney cell line HEK293 with an expression plasmid for human TKTL1. Beyond that, weak expression of endogenous tktl1 mRNA was measured in the cell lines JAR and U251. Western blot analysis of JAR and U251 cells did not detect TKTL1 at the expected size of 65kDa with all three antibodies specific for TKTL1 protein and immunohistochemical staining was observed with antibody JFC12T10 only. All other cell lines tested here revealed expression of tktl1 mRNA below detection limits and were negative for TKTL1 protein. However, in all cell lines including TKTL1-negative HEK293-control cells, antibody JFC12T10 detected multiple proteins with different molecular weights. Importantly, JAR and U251 did neither demonstrate an outstanding production of lactic acid nor increased resistance against chemotherapeutics or to ionizing radiation, respectively. Conclusion: Using RT-qPCR and three different antibodies we observed only exceptional occurrence of TKTL1 in a panel of malignant human cell lines in vitro. The presence of TKTL1 was unrelated to either the rate of glucose consumption/lactic acid production or resistance against chemo- and radiotherapy. © 2015 Kämmerer et al. Source

Paul N.R.,University of Manchester | Paul N.R.,CRUK Beatson Institute | Jacquemet G.,University of Manchester | Jacquemet G.,Turku Center for Biotechnology | Caswell P.T.,University of Manchester
Current Biology

Integrins are a family of heterodimeric receptors that bind to components of the extracellular matrix and influence cellular processes as varied as proliferation and migration. These effects are achieved by tight spatiotemporal control over intracellular signalling pathways, including those that mediate cytoskeletal reorganisation. The ability of integrins to bind to ligands is governed by integrin conformation, or activity, and this is widely acknowledged to be an important route to the regulation of integrin function. Over the last 15 years, however, the pathways that regulate endocytosis and recycling of integrins have emerged as major players in controlling integrin action, and studying integrin trafficking has revealed fresh insight into the function of this fascinating class of extracellular matrix receptors, in particular in the context of cell migration and invasion. Here, we review our current understanding of the contribution of integrin trafficking to cell motility. © 2015 Elsevier Ltd. All rights reserved. Source

Ahmad I.,CRUK Beatson Institute
Annals of the Royal College of Surgeons of England

Urothelial cell carcinoma (UCC) of the bladder is one of the most common malignancies, causing considerable morbidity and mortality worldwide. It is unique among the epithelial carcinomas as two distinct pathways to tumourigenesis appear to exist: low grade, recurring papillary tumours usually contain oncogenic mutations in FGFR3 or HRAS whereas high grade, muscle invasive tumours with metastatic potential generally have defects in the pathways controlled by the tumour suppressors p53 and retinoblastoma. Over the last two decades, a number of transgenic mouse models of UCC, containing deletions or mutations of key tumour suppressor genes or oncogenes, have helped us understand the mechanisms behind tumour development. In this summary, I present my work investigating the role of the WNT signalling cascade in UCC. Source

Muinonen-Martin A.J.,CRUK Beatson Institute | Susanto O.,CRUK Beatson Institute | Zhang Q.,Babraham Institute | Smethurst E.,Babraham Institute | And 14 more authors.
PLoS Biology

The high mortality of melanoma is caused by rapid spread of cancer cells, which occurs unusually early in tumour evolution. Unlike most solid tumours, thickness rather than cytological markers or differentiation is the best guide to metastatic potential. Multiple stimuli that drive melanoma cell migration have been described, but it is not clear which are responsible for invasion, nor if chemotactic gradients exist in real tumours. In a chamber-based assay for melanoma dispersal, we find that cells migrate efficiently away from one another, even in initially homogeneous medium. This dispersal is driven by positive chemotaxis rather than chemorepulsion or contact inhibition. The principal chemoattractant, unexpectedly active across all tumour stages, is the lipid agonist lysophosphatidic acid (LPA) acting through the LPA receptor LPAR1. LPA induces chemotaxis of remarkable accuracy, and is both necessary and sufficient for chemotaxis and invasion in 2-D and 3-D assays. Growth factors, often described as tumour attractants, cause negligible chemotaxis themselves, but potentiate chemotaxis to LPA. Cells rapidly break down LPA present at substantial levels in culture medium and normal skin to generate outward-facing gradients. We measure LPA gradients across the margins of melanomas in vivo, confirming the physiological importance of our results. We conclude that LPA chemotaxis provides a strong drive for melanoma cells to invade outwards. Cells create their own gradients by acting as a sink, breaking down locally present LPA, and thus forming a gradient that is low in the tumour and high in the surrounding areas. The key step is not acquisition of sensitivity to the chemoattractant, but rather the tumour growing to break down enough LPA to form a gradient. Thus the stimulus that drives cell dispersal is not the presence of LPA itself, but the self-generated, outward-directed gradient. © 2014 Muinonen-Martin et al. Source

Peter S.,University of Wurzburg | Bultinck J.,Ghent University | Myant K.,CRUK Beatson Institute | Jaenicke L.A.,University of Wurzburg | And 13 more authors.
EMBO Molecular Medicine

Deregulated expression of MYC is a driver of colorectal carcinogenesis, necessitating novel strategies to inhibit MYC function. The ubiquitin ligase HUWE1 (HECTH9, ARF-BP1, MULE) associates with both MYC and the MYC-associated protein MIZ1. We show here that HUWE1 is required for growth of colorectal cancer cells in culture and in orthotopic xenograft models. Using high-throughput screening, we identify small molecule inhibitors of HUWE1, which inhibit MYC-dependent transactivation in colorectal cancer cells, but not in stem and normal colon epithelial cells. Inhibition of HUWE1 stabilizes MIZ1. MIZ1 globally accumulates on MYC target genes and contributes to repression of MYC-activated target genes upon HUWE1 inhibition. Our data show that transcriptional activation by MYC in colon cancer cells requires the continuous degradation of MIZ1 and identify a novel principle that allows for inhibition of MYC function in tumor cells. © 2014 The Authors. Source

Discover hidden collaborations